

Problem Solving and Programming CSE1001

Prof. Tulasi Prasad Sariki

August 9, 2019

Different patterns in Algorithm

- Sequential Sequential structure executes the program in the order in which they appear in the program
- **Selectional (conditional-branching)** Selection structure control the flow of statement execution based on some condition
- Iterational (Loops) Iterational structures are used when part of the program is to be executed several times

Sequential Pattern

Example1: Find the average runs scored by a batsman in 4 matches

Algorithm

Step 1: Start

Step 2: Input 4 scores say runs1,runs2,runs3 and runs4

Step 3: Accumulate runs1,runs2,run3,and runs4 and store it in the variable

called total_runs

Step 4: Divide total_runs by 4 and find the average

Step 5: Display the average

Step 6: Stop

Flow Chart

PSEUDO CODE:

```
Begin read run1,run2,run3 and run4 compute total_run= run1+run2+run3+run4 compute batting_average= total_run/4 display batting_average end
```


Batting Average

Program

```
print ("Enter_four_Scores")
run1= int(input())
run2= int(input())
run3= int(input())
run4= int(input())
total_run=(run1+run2+run3+run4)
batting_average = total_run/4
print("Batting_Average_is", batting_average)
```


Area of Circle

ALGORITHM

Step 1 : Start

Step 2: Get the input for **RADIUS**

Step 3: Find the square of RADIUS and store it in SQUARE

Step 4: Multiply SQUARE with 3.14 and store the result in AREA

Step 5 : Display AREA

Step 6: Stop

Flow Chart

PSEUDO CODE:

```
Begin
   accept radius
   compute square = radius * radius
   compute area = pi * square
   display area
end
```

Program

```
import math
print("Enetr_Radius")
radius = float(input())
area = math.pi*radius*radius
print("Area_of_Circle_is_", area)
```


EXERCISE

An university is setting up a new lab at their premises. Design an algorithm and write Python code to determine the approximate cost to be spent for setting up the lab. Cost for setting the lab is sum of cost of computers, cost of furnitures and labour cost. Use the following formula for solving the problem:

Cost of computer = cost of one computer * number of computers Cost of furniture = Number of tables * cost of one table + number of chairs * cost of one chair

Labour cost = number of hours worked * wages per hour

Budget for Lab

Input	Processing	Output	
cost of one com-	$Budget = Cost \ of \ computers + cost$	Budget	for
puter, number	of furniture $+$ labour cost	Lab	
of computers,	Cost of computer $=$ cost of one com-		
number of tables,	puter * number of computers		
cost of one table,	Cost of furniture $=$ Number of tables		
number of chairs,	st cost of one table $+$ number of chairs		
cost of one chair,	* cost of one chair		
number of hours	$Labour\ cost\ =\ number\ of\ hours$		
worked, wages per	worked * wages per hour		
hour			

Python Program

```
print("Enter cost of one computer")
cost Computer = float(input())
print("Enter num of computers")
num Computer = int(input())
print("Enter cost of one table")
cost Table = float(input())
print("Enter num of tables")
num Tables = int(input())
print ("Enter cost of one chair")
cost Chair = float(input())
print ("Enter num of chairs")
num Chairs = int(input())
print("Enter wage for one hour")
wages Per Hr = float(input())
print("Enter num of hours")
num Hrs = int(input())
```


Python Program

Browsing Problem

EXERCISE

Given the number of hours and minutes browsed, write a program to calculate bill for Internet Browsing in a browsing center. The conditions are given below.

- (a) 1 Hour Rs.50
- (b) 1 minute Re. 1
- (c) Rs. 200 for five hours

Boundary condition: User can only browse for a maximum of 7 hours Check boundary conditions

Browsing Program

Input	Processing	Output	
Number of	Check number of hours browsed, if it	Amount	to
hours and	is greater than 5 then add Rs 200 to	be Paid	
minutes	amount for five hours and subtract 5		
browsed	from hours		
	Add Rs for each hour and Re 1 for		
	each minute		
	Basic process involved: Multiplication		
	and addition		

Pseudo code:

READ hours and minutes SET amount = 0 IF hours >= 5 then CALCULATE amount as amount + 200

COMPUTE hours as hours 5

END IF

COMPUTE amount as amount + hours * 50

COMPUTE amount as amount + minutes * 1

PRINT amount

Test Cases

Input

Hours = 6

Minutes = 21

Output

Amount = 271

Processing Involved

Amount = 200 for first five hours

50 for sixth hour

21 for each minute

Input

Hours = 8

Minutes = 21

Output

Invalid input

Processing Involved

Boundary conditions are violated

Already Know

- To read values from user
- Write arithmetic expressions in Python
- Print values in a formatted way

Already Know

- To read values from user.
- Write arithmetic expressions in Python
- Print values in a formatted way

Yet to Learn

Check a condition

Already Know

- To read values from user.
- Write arithmetic expressions in Python
- Print values in a formatted way

Yet to Learn

Check a condition

Selection Pattern

 A selection control statement is a control statement providing selective execution of instructions.

Control flow of decision making

if Statement

• An **if statement** is a selection control statement based on the value of a given Boolean expression.

The if statement in Python

The in compensation of June 1			
If statement	Example use		
If condition:	If $grade >= 70$:		
statements	print('pass')		
else:	else:		
statements	print('fail')		

Indentation in Python

- One fairly unique aspect of Python is that the amount of indentation of each program line is significant.
- In Python indentation is used to associate and group statements

Valid indentation		Invalid indentation	
(a) if condition: statement statement else: statement statement	(b) if condition: statement statement else: statement statement	(c) if condition: statement statement else: statement statement	(d) if condition: statement statement else: statement statement

Nested if Statements

- There are often times when selection among more than two sets of statements (suites) is needed.
- For such situations, if statements can be nested, resulting in multi-way selection.

Nested if statements

if condition: statements else: if condition: statements else: if condition: statements

etc.

Example use

```
if grade >= 90:
    print('Grade of A')
else:
    if grade >= 80:
        print('Grade of B')
    else:
        if grade >= 70:
            print('Grade of C')
    else:
        if grade >= 60:
            print('Grade of D')
        else:
            print('Grade of F')
```


Else if Ladder

```
if grade >= 90:
    print('Grade of A')
elif grade >= 80:
    print('Grade of B')
elif grade >= 70:
    print('Grade of C')
elif grade >= 60:
    print('Grade of D')
else:
    print('Grade of F')
```


Multiple Conditions

- Multiple conditions can be check in a 'if' statement using logical operators 'and' and 'or'.
- Python code to print 'excellent' if mark1 and mark2 is greater than or equal to 90, print 'good' if mark1 or mark2 is greater than or equal to 90, print 'need to improve' if both mark1 and mark2 are lesser than 90

Multiple Conditions

- Multiple conditions can be check in a 'if' statement using logical operators 'and' and 'or'.
- Python code to print 'excellent' if mark1 and mark2 is greater than or equal to 90, print 'good' if mark1 or mark2 is greater than or equal to 90, print 'need to improve' if both mark1 and mark2 are lesser than 90

Example

```
if (mark1 >= 90 and mark2 >= 90):
    print('excellent')
if (mark1 >= 90 or mark2 >= 90):
    print('good')
else:
    print('needs to improve')
```


Browsing Problem

```
print ("enter num of hours")
hour = int(input())
print ("enter num of minutes")
min = int(input())
if (hour>7):
    print("Invalid input")
elif hour>=5:
    amount = 200
    hour = hour - 5
    amount = amount + hour * 50 + min
    print(amount)
```


Eligibility for Scholarship

PROBLEM

Government of India has decided to give scholarship for students who are first graduates in family and have scored average > 98 in math, physics and chemistry. Design an algorithm and write a Python program to check if a student is eligible for scholarship.

Boundary Conditions: All marks should be > 0

Eligibility for Scholarship

Problem

Government of India has decided to give scholarship for students who are first graduates in family and have scored average > 98 in math, physics and chemistry. Design an algorithm and write a Python program to check if a student is eligible for scholarship.

Boundary Conditions: All marks should be > 0

PAC

Input	Processing	Output
Read first grad-	Compute total $=$ phy mark $+$	Print either candidate
uate, physics,	che mark $+$ math mark	qualified for Scholar-
chemistry and	Average = total/3	ship or candidate not
maths marks	Check if the student is first	qualified for Scholar-
	graduate and <i>average</i> >= 98	ship

Eligibility for Scholarship

Algorithm

Step 1: Start

Step 2: Read first graduate, physcis, chemistry and maths marks

Step 3: If anyone of the mark is less than 0 then print 'invalid input' and terminate execution

Step 3: Accumulate all the marks and store it in Total

Step 4: Divide Total by 3 and store it in Average

Step 5 : If student is first graduate Average score is greater than or equal

to 98 then print candidate qualified for Scholarship

Else

Print candidate not qualified for scholarship

Stop 6: Stop

Test Cases

Input

First graduate = 1, Phy mark = 98, Che mark = 99, math mark = 98

Output

candidate qualified for Scholarship

Processing Involved

Total = 295

Average = 98.33

Student is first graduate and average > 98

Test Cases

Input

First graduate = 0, Phy mark = 98, Che mark = 99, math mark = 98

Output

candidate qualified for Scholarship

Processing Involved

Total = 295

Average = 98.33

Student is not first graduate and average > 98

Test Cases

Input

First graduate = 1, Phy mark = 98, Che mark = 99, math mark = 90

Output

candidate qualified for Scholarship

Processing Involved

Total = 287

Average = 95.67

Student is first graduate and average < 98


```
print('Is first graduate(1 for yes and 0 for no')
first = int(input())
print('Enter Physics Marks')
phy mark = float(input())
print('Enter Chemistry Marks')
che mark=float(input())
print('Enter Math Marks')
mat mark=float(input())
total mark= phy mark+che mark+mat mark
if (phy mark <0 or che mark <0 or mat mark<0):
    print('Invalid input')
else:
    average = total mark/3
    if first==1 and average >= 98:
        print('candidate qualified for Scholarship')
    else:
        print('candidate not qualified for Scholarship')
```


Algorithm for Largest of Three numbers

Algorithm

Step1: Start

Step2: Read value of a, b and c

Step3: If a is greater than b then

compare a with c and if a is bigger then say

a is biggest else say c is biggest

else Compare b with \boldsymbol{c} , if b is greater than \boldsymbol{c}

say b is biggest else c is biggest

Step 5: Stop

Flowchart

Test Cases

Input

$$a = 12$$
, $b = 13$, $c = 14$

Output

c is greatest

Processing Involved

b is greater than a but c is greater than b

Test Cases

Input

$$a = 13$$
, $b = 12$, $c = 14$

Output

c is greatest

Processing Involved

a is greater than b but c is greater than a

Test Cases

Input

$$a = 13$$
, $b = 2$, $c = 4$

Output

a is greatest

Processing Involved

a is greater than b and a is greater than c

Test Cases

Input

$$a = 3$$
, $b = 12$, $c = 4$

Output

b is greatest

Processing Involved

 \boldsymbol{b} is greater than a and \boldsymbol{b} is greater than \boldsymbol{c}

Python Program

```
a = int(input())
b = int(input())
c = int(input())
if a>b:
    if a>c:
        print ('a is greatest')
    else:
        print ('c is greatest')
else:
    if b>c:
        print ('b is greatest')
    else:
        print ('c is greatest')
```


if/else Ternary Expression

Consider the following statement, which sets A to either Y or Z, based on the truth value of X:

if X:

$$A = Y$$

else:

$$A = Z$$

new expression format that allows us to say the same thing in one expression:

A = Y if X else Z

$$>>> A = 't'$$
 if 'spam' else 'f' $>>> A$

$$>>> A = 't' \text{ if " else 'f'}$$

Exercise Problem

Exercises

- 1. Write a python code to check whether a given number is odd or even?
- 2. Write a python code to check whether a given year is leap year or not?
- 3. Write a python code in finding the roots of a quadratic equation?
- 4. Write a python program to Generate Cluster of student based on their CGPA. The details are as follows:

```
\begin{array}{llll} <= 9 \text{ CGPA} <= 10 & - \text{ outstanding} \\ <= 8 \text{ CGPA} < 9 & - \text{ excellent} \\ <= 7 \text{ CGPA} < 8 & - \text{ good} \\ <= 6 \text{ CGPA} < 7 & - \text{ average} \\ <= 5 \text{ CGPA} < 6 & - \text{ better} \\ \text{CGPA} < 5 & - \text{ poor} \end{array}
```


