

Prof. Tulasi Prasad Sariki SCSE, VIT, Chennai<br>www.learnersdesk.weebly.com

## Outline

- What is Data Visualization?
- Why do we need Data Visualization?
- Goals of Data Visualization
- Characteristics of effective graphical displays
- Different Types of Data
- Gestalt Principles of Visual Perception




## 02:54

## What is Data Visualization?

- Data visualization is a general term that describes any effort to help people understand the significance of data by placing it in a visual context.
- Patterns, trends and correlations that might go undetected in text-based data can be exposed and recognized easier with data visualization software.


## Why Data Visualization?

- Did you know that 25\% of your brain power is connected to visual stimulus, and $70 \%$ of our sensory receptors are in our eyes?
- No wonder we "get the picture" faster when presenting information visually


## Why Data Visualization?

- A picture is worth 1000 words.
- A picture can also be worth 1000 data points.
- In 1973, the statistician Francis Anscombe demonstrated the importance of graphing data.
- The Anscombe's Quartet shows how four sets of data with identical simple summary statistics can vary considerably when graphed.


## Why Data Visualization?

- Simple Summary Statistics of Anscombe's Quartet Data Table

| Property | Value |
| :--- | :--- |
| Mean of $x$ of each data set | 9 (exact) |
| Variance of $x$ in each data set | 11 (exact) |
| Mean of $y$ in each data set | 7.50 (to 2 decimal places) |
| Variance of $y$ in each data set | 4.122 or 4.127 (to 3 decimal places) |
| Correlation between <br> $x$ and $y$ in each data set | 0.816 (to 3 decimal places) |
| Linear regression line <br> for each data set | $y=3.00+0.500 x$ <br> (to 2 and 3 decimal places, respectively) |

## Why Data Visualization?

- Graph of Anscombe's Quartet Data Table






## Goals of Data Visualization

- A primary goal of data visualization is to communicate information clearly and efficiently via statistical graphics, plots and information graphics.
- Numerical data may be encoded using dots, lines, or bars, to visually communicate a quantitative message.


## Goals of Data Visualization

- Effective visualization helps users analyze and reason about data and evidence. It makes complex data more accessible, understandable and usable.
- Users may have particular analytical tasks, such as making comparisons or understanding causality, and the design principle of the graphic follows the task.
- Tables are generally used where users will look up a specific measurement, while charts of various types are used to show patterns or relationships in the data for one or moners variables


## Characteristics of effective graphical displays

- show the data
- induce the viewer to think about the substance rather than about methodology, graphic design, the technology of graphic production or something else
- avoid distorting what the data has to say
- present many numbers in a small space


# Characteristics of effective graphical displays 

- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from a broad overview to the fine structure
- serve a reasonably clear purpose: description, exploration, tabulation or decoration
- be closely integrated with the statistical and verbal descriptions of a data set


## Characteristics of effective graphical displays

- The greatest value of a picture is when it forces us to notice what we never expected to see. - John Tukey


## Different Types of Data



## Different Types of Data



## Different Types of Data



## Quantitative Comparison

- Use sparingly
- No more than six components.
- Not useful when values of each component are similar



## Quantitative Comparison

- Bar graph
- Best for comparing categories.
- Best Practices

- Make bars and columns wider than the space between them.
- Do not allow grid lines to pass through columns or bars.
- Use a single font type on a graph.


## Quantitative Comparison

- Stacked bar graph



## Quantitative Comparison

- Group Bar Plot or Clustered bar graph



## Quantitative Comparison

- Bubble Charts



## Quantitative Comparison

－Pictogram Chart
－For discrete data

Categories


Icons／Symbols／Pictures

France
帆极

span Min
Germany林れ林梑 Portugal

Key／Legend

A＝10 people

## Different Types of Data



## Quantitative Relational

Temperatures in New York City

- Line Charts
- For identifying trends.



## Quantitative Relational

Smalltown Teens With Cells Phones

- Line Charts
- For identifying trends



## Quantitative Relational

Scatter Plots- For testing and identifying relationships, and statistical correlations


## Quantitative Relational

- Surface plots
- Topography, Density Functions that have two dependent variables



## Quantitative Relational

- Surface plots
- Topography, Density Functions that have two dependent variables




## Quantitative Relational

## - Heat Map



## Quantitative Relational

- Co-occurrence matrix casese all in induing Etris)-a tine estice / Heat map

| Figure 15: Heat map* showing the flows as \% of total assets into various fund classes (all including ETFs) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fund Category | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 YTD |
| Total Equity Funds | 4\%. | 3\% | 3\% | 15 | 3 c | $2 \mathrm{~F} \cdot$ | 2\% | 1\%. | 19. | 3.4\% |
| Total Developed Market Equity Funds | 4) | 25 | 2\% | -14. | -3k | $-10$ | 0 O | $0{ }^{2}$ | 0\% | 3.8\% |
| internations Eouity Funcs | 85 | 6\% | 7\% | 64 | 45. | $4 \%$ | 1\% | 1\% | 1\% | 3.8\% |
| US Equity Funds | 1\% | .15 | 1\% | 0\% | 0 c | 48 c | $0 \%$ | $00^{2}$ | 18\% | 3.6\% |
| Westem Europe Equity Funds | 1519 | -1\% | 7\% | 13 F | 121 | 1 N | -3n\% | -20.4. | -29.9 | $0.4 \%$ |
| Jsonn Equity Funds | 52 | 448 | 05 | 37 | In | 19x | -3\% | 5\% | 10 s | 24.75 |
| Pacific Equity Funds | 7\% | . $3 \%$ | 12\% | 18.8. | 181 | 178 | $8 \%$ | $8{ }^{\text {\% }}$ \% | 1\% | 7.9\% |
| Total Emerging Market Equity Funds | $3 \%$ | 16\% | $11 \%$ | 121) | 78 | 27 m | 16\% | .5\% | 7s | 0.4\% |
| Oichal Emering Market Equiry Funds | -100\% | 35 | 45\% | 10\% | -4x | $32 \%$ | 23\% | -18. | 12 | 2.5\% |
| EMEA Equty furds | 274 | 4005 | 68\% | $2 \mathrm{2m}$ | ax | 1789 | 20 BE | 11 | 4\% | 7.45 |
| Latin America Equity Funds | 108. | 81\% | $27 \%$ | 40 F | 12 F | 485 | 4\%6 | 12 | -18. | -8.59 |
| Asia Pacitic Exuapan Funds | 215 | 22\% | 27\% | $14{ }^{2}$ | 9x- | 278 | 10n/ | T | 3\% | 0.2\% |
| Total Bond Funds | 148 | $4 \%$ | 85 | -2x- | 101 | 24 | 16\% | 4\% | 115 | 1.5\% |
| International Bond Funds | 12\% | 128 | 108 | -2400 | 348 | 254 | 23\% | 3*- | 65 | 1.1\% |
| Corporate High Yield Bond Funds | NA | 18 | 2\% | 4\% | $5{ }^{2}$ | 40 P | 15\% | 4\% | 18\% | $1.4 \%$ |
| US Bond Funds | NA | 178 | 95\% | 4\% | 2 F | 230. | 100 | 6\% | 12\%* | 2.2\% |
| Western Europe Bond funds | NA | 15 | 58 c | -84 | $4{ }^{6}$ | 292 | -7\% | 3 m | 2\% | -3.45 |
| Germany Bond funds | NA | NA | NA | NA | NA | NA | 29\%\% | $25 \%$ | 138 | $5.7 \%$ |
| Switzerland Bond funds | Na | Na | NA | NA | NA | NA | 195 | 18 | 2\% | 2.0\% |
| United Kingdom Bond funds | NA | 228 | 12 L | 1418 | 268 | 644 | 8\% | 3* | 0* | 4.15 |
| Emerging Markets Debt Funds | 12. | 24\% | 18\% | $9 \times 5$ | 21 | 198 | 54\% | 75 | 2585 | 2.4\% |
| Asia ex-Japan Bond funds | NA | 4\%. | 35 | 16 N | 10 | 2\% | 710 | 259 | 1289 | $2.2{ }^{\circ}$ |
| Emerging Europe Bond funds | NA | 408 | 129 | 18 F | 275 | 189 | . 86 | 398 | 9 m | 0.1\% |
| Lat.Am Bond funds | NA | 28. | 22 | 338 | 300 | 188. | $46 \%$ | 38. | 68\% | 2.8\% |
| Money Market Funds | Na | NAI | NA | NA | 3 m | 178 | 188 | -4* | $-18$ | 2.75 |
| Calour Legent |  |  |  |  |  |  |  |  |  |  |
|  |  | 1389 | $8^{8 / 0}$ | 320] | 3近 | 310] | 72 |  |  |  |
|  |  | 5 | 1010\% | 5\% | OV | 10.55 | $10 \%$ |  |  |  |

## Quantitative Relational and Comparison

- Area Graph



## Quantitative Relational and Comparison <br> Stacked Area Graph

Traffic Accidents 2005
Number of Persons Involved in Troffic Accidents by Mode of Tranportation


## Different Types of Data



## Distributions

Box and Whisker Plot


## Distributions

## Crime Rates in US



## Distributions

- Histograms
- A histogram is a plot that lets you discover, and show, the underlying frequency distribution (shape) of a set of continuous data.



## Distributions

murder

aggravated_assault

forcible_rape

burglary

robbery

larceny_theft

motor_vehicle_theft


## Different Types of Data



# Qualitative Data: Textual Structures 



## Qualitative Data: Textual Structures

- Word Tree



## Different Types of Data



## Qualitative Relational Structures

- Source Directed Node Link Diagram



## Qualitative Relational Structures

－Linear Layout


 ひひ言运定

0
$\stackrel{5}{0}$
$\sum$
$\sum$



## Qualitative Relational Structures

- Chord Diagram

- visualises the inter-relationships between entities. The connections between entities are used to display that they share something in common.
- The size of the arc is proportional to the importance of the flow.


## Different Types of Data



Hierarchical Structures


## Hierarchical Structures



## Hierarchical Structures

- Multi-Directional

Trees

- Websites as Graphs



## Hierarchical Structures

- Radial Trees



## Hierarchical Structures

## - Rectangular Tree Maps



## Hierarchical Structures

## Size of the AIDS epidemic <br> 33.4 MILLION PEOPLE LIVING WITH HIV

2 MILLION DEATHS PER YEAR
2.7 MILLION NEW INFECTIONS PER YEAR
sencooctiven

ONLY ABOUT 40\%
KNOW THEIR HIV STATUS


## Hierarchical Structures

- Circular Tree Maps


## Different Types of Data



## Temporal Structures

## - Time Lines

## Contract Visualization: the Trajectory

Visualisation in Education* Visualisation about Contracts Visualisation in and about Contracts


## Temporal Structures

## Timeline Chart <br> WW II Timeline Chart

## WW II TIMELINE CHAR'T



## Temporal Structures

Exports and Imports to and from DENMARK \&e NORWAY from 1700 to 1780.


The Bottom line is divided into Years, the Right hand line into L19000 each.

## Different Types of Datas



## Spatial Structures: Maps



## Spatial Structures: Maps



## Spatial Structures: HeatMap



## Different Types of Data



## Spatial-Temporal Structures



Charles Minard's map of Napoleon's disastrous Russian campaign of 1812. The graphic is notable for its representation in two dimensions of six types of data: the number of Napoleon's troops; distance; temperature; the latitude and longitude; direction of travel; and location relative to specific dates

## Spatial-Temporal Structures



## Visual Variables

- Visual variables for quantitative data (quantities)



## Visual variables for qualitative data (category)

## Texture



Colour

$\square$


Orientation


Shape


## Class Activity

- Find a visualization online.
- Answer the following questions:
- In one or two sentences, what story does it tell? Identify the data.
- What type of data is it?
- How many dimensions are being visually mapped? Identify the visual variables used.
- Identify the type of visualization, or methods used.
- If it is interactive, describe the interaction, and the data revealed.


## Chart Suggestions-A Thought-Starter



## Thank You

