

13. Visualization Techniques for Classification & Clustering

Prof. Tulasi Prasad Sariki SCSE, VIT, Chennai www.learnersdesk.weebly.com

KDD Process

- Selection
 - Obtain data from all of sources
- Preprocessing
 - After selecting the data, clean it to make sure it is consistent
- Transformation
 - After preprocessing the data, analyze the format/amount of data
- Data Mining
 - Once the data is in a useable format, apply various algorithms based upon the results trying to be achieved
- Interpretation/Evaluation
 - Finally, present the results of the data mining step to the user, so that the results can be used to solve the business need at hand

Importance of Data Visualization

- The final step in the KDD process :
- Highly dependent on the Data Visualization technique
- Bad/inappropriate technique may result in misunderstanding
- Misunderstanding may cause an incorrect (or no) decision

It is important to consider that the KDD process is useless if the results are not understandable

Suggested Direction

- Need to determine techniques that balance simplicity with completeness
- If this can be done for non-expert users
 - Simplicity & Completeness → Understanding
 - Understanding \rightarrow Trust
 - Trust \rightarrow more use of KDD/DM
 - Result will be:
 - Better business value
 - Higher ROI

Common Visualization Techniques

- Visualization techniques dependent upon
 - The type of data mining technique chosen
 - The underlying structure and attributes of the data

Classification

- Decision Trees
- Scatter Plots
- Axis-Parallel Decision Trees
- Circle Segments
- Decision Tables

Clustering

- Scatter Plots
- Dendrograms
 - Smoothed Data Histograms
 - Self-Organizing Maps
 - Proximity Matrixes

Classification

Decision Tree

Information limited to

Attributes

Splitting values

Terminal node class assignments

Decision Tree with Histograms

- Data mining rarely classify 100% of the data correctly:
 - Include the success of properly classifying the data - histogram added for each terminal node
 - Percentage of data that was classified correctly/incorrectly
 - Assists users in determining if the classification is 'good enough'

Decision Tree Different Format

- Vertical representation allows for easy user interaction
 - Combines the split points and classification accuracy - compactly
 - Key difference colors are matched with a specific classification

Scatter Plot with Regression Line

- Excellent way to view 2-dimensional data
- Familiar to anyone who has taken high-school algebra
- Regression lines provide descriptive techniques for classification

Axis-Parallel Decision Tree

- Combination Scatter Plot and Decision Tree
- Areas divided in parallel regions on the axis
- Well suited for classification problems with two attribute values
- High visibility into the impact of outliers

Circle Segments

- Multi-dimension data
- Maps dataset with n dimensions onto a circle divided by n segments
 - Each segment is a different attribute
 - Each pixel inside a segment is a single value of the attribute
 - Values of each attribute are then sorted (independently) and assigned a different colors based upon its class

Decision Table

- Interactive technique
- Maps attribute data to a 2D hierarchical matrix
- Levels can be drilled down another set of attributes
- Height of a cell conveys the number of data entities
- Cells color coded
 - Neutral color \rightarrow no data in that intersection point
 - Color coded by class (percentage)

Clustering

Scatter Plot

- Extensions include, displaying points in:
 - Various sizes and colors to indicate additional attributes
 - Shading of points to introduce a third dimension
 - Using different brightness levels of the same color to represent continuous values for the same attribute
 - Using various points or classification identifiers (i.e., numbers, symbols)
 - Using various glyphs to display additional attributes

Scatter Plot

 Map decision trees on top of scatter plots to describe clusters

Scatter Plot with Regression Lines

Scatter Plot with Min Spanning Tree

Dendrogram

- Intuitive representation hierarchical decomposition of data into sets of nested clusters.
- From an agglomerative perspective:
 - Each leaf a single data entity
 - Each internal node the union of all data entities in its sub-tree
 - The root the entire dataset
 - The height of any internal node the similarity between its 'children'.

Dendrogram with Exemplars

- The "most typical member of each cluster"
 [Wishart99]
 - Underlined labels of the leafs
 - Done in combination with shading to identify the clustering level

/ ['] '

Smoothed Data Histogram

- Represents data on a 'display map'
- Similar data items are located close to each other
- More defined the clusters – lighter colors

Self-Organizing Map 'Grid'

- Source of Smoothed Data Histogram
- Numbers indicate most 'common' cluster

1					5	
2	3	2		5	6	5
2	2	2	4	5	5	5
7	1	1	1	5	7	
7	8	7	7	7	10	7
7	9	7	7		11	7
	8			7	10	7

Proximity Matrix

- Graphically display the relationship between data elements
- Usually symmetric, but can be sorted by the strength of relationships

Proximity Matrix and Dendrogram

Summary

- Data visualization techniques are extremely important for understanding the KDD process
- A balance of simplicity and completeness is important
- The techniques discussed allow average users to understand the results of the KDD process
- Understanding → KDD results to be interpreted/trusted by non-expert users → extending the business value
- If data visualization techniques do not establish a high level of trust in the KDD process, the process will fail

Thank You