
Earley parser 1

Earley parser
In computer science, the Earley parser is an algorithm for parsing strings that belong to a given context-free
language, though (depending on the variant) it may suffer problems with certain nullable grammars. The algorithm,
named after its inventor, Jay Earley, is a chart parser that uses dynamic programming; it is mainly used for parsing in
computational linguistics. It was first introduced in his dissertation (and later appeared in abbreviated, more legible
form in a journal).
Earley parsers are appealing because they can parse all context-free languagesTalk:Earley parser#, unlike LR
parsers and LL parsers, which are more typically used in compilers but which can only handle restricted classes of
languages. The Earley parser executes in cubic time in the general case , where n is the length of the parsed
string, quadratic time for unambiguous grammars , and linear time for almost all LR(k) grammars. It
performs particularly well when the rules are written left-recursively.

Earley Recognizer
The following algorithm describes the Earley recognizer. The recognizer can be easily modified to create a parse tree
as it recognizes, and in that way can be turned into a parser.

The algorithm
In the following descriptions, α, β, and γ represent any string of terminals/nonterminals (including the empty string),
X and Y represent single nonterminals, and a represents a terminal symbol.
Earley's algorithm is a top-down dynamic programming algorithm. In the following, we use Earley's dot notation:
given a production X → αβ, the notation X → α • β represents a condition in which α has already been parsed and β
is expected.
Input position 0 is the position prior to input. Input position n is the position after accepting the nth token.
(Informally, input positions can be thought of as locations at token boundaries.) For every input position, the parser
generates a state set. Each state is a tuple (X → α • β, i), consisting of
• the production currently being matched (X → α β)
•• our current position in that production (represented by the dot)
• the position i in the input at which the matching of this production began: the origin position

(Earley's original algorithm included a look-ahead in the state; later research showed this to have little practical
effect on the parsing efficiency, and it has subsequently been dropped from most implementations.)
The state set at input position k is called S(k). The parser is seeded with S(0) consisting of only the top-level rule.
The parser then repeatedly executes three operations: prediction, scanning, and completion.
• Prediction: For every state in S(k) of the form (X → α • Y β, j) (where j is the origin position as above), add (Y

→ • γ, k) to S(k) for every production in the grammar with Y on the left-hand side (Y → γ).
• Scanning: If a is the next symbol in the input stream, for every state in S(k) of the form (X → α • a β, j), add (X

→ α a • β, j) to S(k+1).
• Completion: For every state in S(k) of the form (X → γ •, j), find states in S(j) of the form (Y → α • X β, i) and

add (Y → α X • β, i) to S(k).
It is important to note that duplicate states are not added to the state set, only new ones. These three operations are
repeated until no new states can be added to the set. The set is generally implemented as a queue of states to process,
with the operation to be performed depending on what kind of state it is.

http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Parsing
http://en.wikipedia.org/w/index.php?title=String_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Context-free_language
http://en.wikipedia.org/w/index.php?title=Context-free_language
http://en.wikipedia.org/w/index.php?title=Nullable_grammars
http://en.wikipedia.org/w/index.php?title=Jay_Earley
http://en.wikipedia.org/w/index.php?title=Chart_parser
http://en.wikipedia.org/w/index.php?title=Dynamic_programming
http://en.wikipedia.org/w/index.php?title=Computational_linguistics
http://en.wikipedia.org/w/index.php?title=Talk:Earley_parser%23
http://en.wikipedia.org/w/index.php?title=LR_parser
http://en.wikipedia.org/w/index.php?title=LR_parser
http://en.wikipedia.org/w/index.php?title=LL_parser
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=LR_parser
http://en.wikipedia.org/w/index.php?title=Left_recursion
http://en.wikipedia.org/w/index.php?title=String_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Terminal_and_nonterminal_symbols
http://en.wikipedia.org/w/index.php?title=Empty_string
http://en.wikipedia.org/w/index.php?title=Dynamic_programming
http://en.wikipedia.org/w/index.php?title=Formal_grammar%23The_syntax_of_grammars
http://en.wikipedia.org/w/index.php?title=Lexical_analysis
http://en.wikipedia.org/w/index.php?title=Tuple

Earley parser 2

Pseudocode
Adapted from by Daniel Jurafsky and James H. Martin

function EARLEY-PARSE(words, grammar)

 ENQUEUE((γ → •S, 0), chart[0])
 for i ← from 0 to LENGTH(words) do
 for each state in chart[i] do

 if INCOMPLETE?(state) then

 if NEXT-CAT(state) is a nonterminal then

 PREDICTOR(state, i, grammar) // non-terminal

 else do

 SCANNER(state, i) // terminal

 else do

 COMPLETER(state, i)

 end

 end

 return chart

procedure PREDICTOR((A → α•B, i), j, grammar)
 for each (B → γ) in GRAMMAR-RULES-FOR(B, grammar) do
 ADD-TO-SET((B → •γ, j), chart[j])
 end

procedure SCANNER((A → α•B, i), j)
 if B ⊂ PARTS-OF-SPEECH(word[j]) then
 ADD-TO-SET((B → word[j], i), chart[j + 1])
 end

procedure COMPLETER((B → γ•, j), k)
 for each (A → α•Bβ, i) in chart[j] do
 ADD-TO-SET((A → αB•β, i), chart[k])
 end

Example
Consider the following simple grammar for arithmetic expressions:

 ::= S # the start rule

<S> ::= <S> "+" <M>|<M>

<M> ::= <M> "*" <T>|<T>

<T> ::= "1" | "2" | "3" | "4"

With the input:

2 + 3 * 4

This is the sequence of state sets:

(state no.) Production (Origin) # Comment

Earley parser 3

S(0): • 2 + 3 * 4
(1) P → • S (0) # start rule
(2) S → • S + M (0) # predict from (1)
(3) S → • M (0) # predict from (1)
(4) M → • M * T (0) # predict from (3)
(5) M → • T (0) # predict from (3)
(6) T → • number (0) # predict from (5)

S(1): 2 • + 3 * 4
(1) T → number • (0) # scan from S(0)(6)
(2) M → T • (0) # complete from (1) and S(0)(5)
(3) M → M • * T (0) # complete from (2) and S(0)(4)
(4) S → M • (0) # complete from (2) and S(0)(3)
(5) S → S • + M (0) # complete from (4) and S(0)(2)
(6) P → S • (0) # complete from (4) and S(0)(1)

S(2): 2 + • 3 * 4
(1) S → S + • M (0) # scan from S(1)(5)
(2) M → • M * T (2) # predict from (1)
(3) M → • T (2) # predict from (1)
(4) T → • number (2) # predict from (3)

S(3): 2 + 3 • * 4
(1) T → number • (2) # scan from S(2)(4)
(2) M → T • (2) # complete from (1) and S(2)(3)
(3) M → M • * T (2) # complete from (2) and S(2)(2)
(4) S → S + M • (0) # complete from (2) and S(2)(1)
(5) S → S • + M (0) # complete from (4) and S(0)(2)
(6) P → S • (0) # complete from (4) and S(0)(1)

S(4): 2 + 3 * • 4
(1) M → M * • T (2) # scan from S(3)(3)
(2) T → • number (4) # predict from (1)

S(5): 2 + 3 * 4 •
(1) T → number • (4) # scan from S(4)(2)
(2) M → M * T • (2) # complete from (1) and S(4)(1)
(3) M → M • * T (2) # complete from (2) and S(2)(2)
(4) S → S + M • (0) # complete from (2) and S(2)(1)
(5) S → S • + M (0) # complete from (4) and S(0)(2)
(6) P → S • (0) # complete from (4) and S(0)(1)

The state (P → S •, 0) represents a completed parse. This state also appears in S(3) and S(1), which are complete
sentences.

Earley parser 4

Citations

Other Reference Materials
• Aycock, John; Horspool, R. Nigel (2002). "Practical Earley Parsing". The Computer Journal 45 (6). pp. 620–630.

doi: 10.1093/comjnl/45.6.620 (http:/ / dx. doi. org/ 10. 1093/ comjnl/ 45. 6. 620).
• Leo, Joop M. I. M. (1991), "A general context-free parsing algorithm running in linear time on every LR(k)

grammar without using lookahead", Theoretical Computer Science 82 (1): 165–176, doi:
10.1016/0304-3975(91)90180-A (http:/ / dx. doi. org/ 10. 1016/ 0304-3975(91)90180-A), MR 1112117 (http:/ /
www. ams. org/ mathscinet-getitem?mr=1112117).

• Tomita, Masaru (1984). "LR parsers for natural languages". COLING. 10th International Conference on
Computational Linguistics. pp. 354–357.

External links

C Implementations
• 'early' (http:/ / cocom. sourceforge. net/ ammunition-13. html) An Earley parser C -library.
• 'C Earley Parser' (https:/ / bitbucket. org/ abki/ c-earley-parser/ src) An Earley parser C. Wikipedia:Link rot

Java Implementations
• PEN (http:/ / linguateca. dei. uc. pt/ index. php?sep=recursos) A Java library that implements the Earley

algorithm.
• Pep (http:/ / www. ling. ohio-state. edu/ ~scott/ #projects-pep) A Java library that implements the Earley

algorithm and provides charts and parse trees as parsing artifacts.
• (http:/ / www. cs. umanitoba. ca/ ~comp4190/ Earley/ Earley. java) A Java implementation of Earley parser.

Perl Implementations
• Marpa::R2 (https:/ / metacpan. org/ module/ Marpa::R2) and Marpa::XS (https:/ / metacpan. org/ module/

Marpa::XS), Perl modules. Marpa (http:/ / jeffreykegler. github. com/ Marpa-web-site/) is an Earley's algorithm
that includes the improvements made by Joop Leo, and by Aycock and Horspool.

• Parse::Earley (https:/ / metacpan. org/ module/ Parse::Earley) A Perl module that implements Jay Earley's original
algorithm.

Python Implementations
• Charty (http:/ / www. cavar. me/ damir/ charty/ python/) a Python implementation of an Earley parser.
• NLTK (http:/ / nltk. org/) a Python toolkit that has an Earley parser.
• Spark (http:/ / pages. cpsc. ucalgary. ca/ ~aycock/ spark/) an Object Oriented "little language framework" for

Python that implements an Earley parser.
• earley3.py (http:/ / github. com/ tomerfiliba/ tau/ blob/ master/ earley3. py) A stand-alone implementation of the

algorithm in less than 150 lines of code, including generation of the parsing-forest and samples.

http://en.wikipedia.org/w/index.php?title=Nigel_Horspool
http://en.wikipedia.org/w/index.php?title=The_Computer_Journal
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1093%2Fcomjnl%2F45.6.620
http://en.wikipedia.org/w/index.php?title=Theoretical_Computer_Science_%28journal%29
http://en.wikipedia.org/w/index.php?title=Digital_object_identifier
http://dx.doi.org/10.1016%2F0304-3975%2891%2990180-A
http://en.wikipedia.org/w/index.php?title=Mathematical_Reviews
http://www.ams.org/mathscinet-getitem?mr=1112117
http://www.ams.org/mathscinet-getitem?mr=1112117
http://cocom.sourceforge.net/ammunition-13.html
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
https://bitbucket.org/abki/c-earley-parser/src
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/wiki/Link_rot
http://linguateca.dei.uc.pt/index.php?sep=recursos
http://www.ling.ohio-state.edu/~scott/#projects-pep
http://www.cs.umanitoba.ca/~comp4190/Earley/Earley.java
https://metacpan.org/module/Marpa::R2
https://metacpan.org/module/Marpa::XS
https://metacpan.org/module/Marpa::XS
http://en.wikipedia.org/w/index.php?title=Perl
http://jeffreykegler.github.com/Marpa-web-site/
https://metacpan.org/module/Parse::Earley
http://en.wikipedia.org/w/index.php?title=Perl
http://www.cavar.me/damir/charty/python/
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://nltk.org/
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://pages.cpsc.ucalgary.ca/~aycock/spark/
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://github.com/tomerfiliba/tau/blob/master/earley3.py

Earley parser 5

Common Lisp Implementations
• CL-EARLEY-PARSER (http:/ / www. cliki. net/ CL-EARLEY-PARSER) A Common Lisp library that

implements an Earley parser.

Scheme/Racket Implementations
• Charty-Racket (http:/ / www. cavar. me/ damir/ charty/ scheme/) A Scheme / Racket implementation of an Earley

parser.

Resources
• The Accent compiler-compiler (http:/ / accent. compilertools. net/ Entire. html)

http://www.cliki.net/CL-EARLEY-PARSER
http://www.cavar.me/damir/charty/scheme/
http://en.wikipedia.org/w/index.php?title=Scheme_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Racket_%28programming_language%29
http://accent.compilertools.net/Entire.html

Article Sources and Contributors 6

Article Sources and Contributors
Earley parser Source: http://en.wikipedia.org/w/index.php?oldid=576537591 Contributors: 1&only, AlexChurchill, Architectual, Borsotti, Brynosaurus, Cadr, Chentz, ChrisGualtieri, Clément
Pillias, Conversion script, David Eppstein, Derek Ross, DixonD, EnTerr, Fimbulvetr, Frap, Idmillington, JYOuyang, Jamelan, Jason Quinn, Jeffreykegler, John of Reading, Jonsafari, Khabs,
Kimiko, Kwi, Limited Atonement, Luqui, MCiura, Macrakis, Mkartic me, Opaldraggy, Paul Foxworthy, Peak, RA0808, Rfc1394, Simon_J_Kissane, Two Bananas, UKoch, Woogyun, Zacchiro,
71 anonymous edits

License
Creative Commons Attribution-Share Alike 3.0
//creativecommons.org/licenses/by-sa/3.0/

	Earley parser
	Earley Recognizer
	The algorithm
	Pseudocode
	Example
	S(0): • 2 + 3 * 4
	S(1): 2 • + 3 * 4
	S(2): 2 + • 3 * 4
	S(3): 2 + 3 • * 4
	S(4): 2 + 3 * • 4
	S(5): 2 + 3 * 4 •

	Citations
	Other Reference Materials
	External links
	C Implementations
	Java Implementations
	Perl Implementations
	Python Implementations
	Common Lisp Implementations
	Scheme/Racket Implementations
	Resources

	License

