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Earley parser
In computer science, the Earley parser is an algorithm for parsing strings that belong to a given context-free
language, though (depending on the variant) it may suffer problems with certain nullable grammars. The algorithm,
named after its inventor, Jay Earley, is a chart parser that uses dynamic programming; it is mainly used for parsing in
computational linguistics. It was first introduced in his dissertation (and later appeared in abbreviated, more legible
form in a journal).
Earley parsers are appealing because they can parse all context-free languagesTalk:Earley parser#, unlike LR
parsers and LL parsers, which are more typically used in compilers but which can only handle restricted classes of
languages. The Earley parser executes in cubic time in the general case , where n is the length of the parsed
string, quadratic time for unambiguous grammars , and linear time for almost all LR(k) grammars. It
performs particularly well when the rules are written left-recursively.

Earley Recognizer
The following algorithm describes the Earley recognizer. The recognizer can be easily modified to create a parse tree
as it recognizes, and in that way can be turned into a parser.

The algorithm
In the following descriptions, α, β, and γ represent any string of terminals/nonterminals (including the empty string),
X and Y represent single nonterminals, and a represents a terminal symbol.
Earley's algorithm is a top-down dynamic programming algorithm. In the following, we use Earley's dot notation:
given a production X → αβ, the notation X → α • β represents a condition in which α has already been parsed and β
is expected.
Input position 0 is the position prior to input. Input position n is the position after accepting the nth token.
(Informally, input positions can be thought of as locations at token boundaries.) For every input position, the parser
generates a state set. Each state is a tuple (X → α • β, i), consisting of
• the production currently being matched (X → α β)
•• our current position in that production (represented by the dot)
• the position i in the input at which the matching of this production began: the origin position

(Earley's original algorithm included a look-ahead in the state; later research showed this to have little practical
effect on the parsing efficiency, and it has subsequently been dropped from most implementations.)
The state set at input position k is called S(k). The parser is seeded with S(0) consisting of only the top-level rule.
The parser then repeatedly executes three operations: prediction, scanning, and completion.
• Prediction: For every state in S(k) of the form (X → α • Y β, j) (where j is the origin position as above), add (Y

→ • γ, k) to S(k) for every production in the grammar with Y on the left-hand side (Y → γ).
• Scanning: If a is the next symbol in the input stream, for every state in S(k) of the form (X → α • a β, j), add (X

→ α a • β, j) to S(k+1).
• Completion: For every state in S(k) of the form (X → γ •, j), find states in S(j) of the form (Y → α • X β, i) and

add (Y → α X • β, i) to S(k).
It is important to note that duplicate states are not added to the state set, only new ones. These three operations are
repeated until no new states can be added to the set. The set is generally implemented as a queue of states to process,
with the operation to be performed depending on what kind of state it is.
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Pseudocode
Adapted from by Daniel Jurafsky and James H. Martin

function EARLEY-PARSE(words, grammar)

    ENQUEUE((γ → •S, 0), chart[0])
    for i ← from 0 to LENGTH(words) do
        for each state in chart[i] do

            if INCOMPLETE?(state) then

                if NEXT-CAT(state) is a nonterminal then

                    PREDICTOR(state, i, grammar)         // non-terminal

                else do

                    SCANNER(state, i)                    // terminal

            else do

                COMPLETER(state, i)

        end

    end

    return chart

procedure PREDICTOR((A → α•B, i), j, grammar)
    for each (B → γ) in GRAMMAR-RULES-FOR(B, grammar) do
        ADD-TO-SET((B → •γ, j), chart[ j])
    end

procedure SCANNER((A → α•B, i), j)
    if B ⊂ PARTS-OF-SPEECH(word[j]) then
        ADD-TO-SET((B → word[j], i), chart[j + 1])
    end

procedure COMPLETER((B → γ•, j), k)
    for each (A → α•Bβ, i) in chart[j] do
        ADD-TO-SET((A → αB•β, i), chart[k])
    end

Example
Consider the following simple grammar for arithmetic expressions:

 ::= S      # the start rule

<S> ::= <S> "+" <M>|<M>

<M> ::= <M> "*" <T>|<T>

<T> ::= "1" | "2" | "3" | "4"

With the input:

2 + 3 * 4

This is the sequence of state sets:

(state no.) Production (Origin) # Comment

-----------------------------------------
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S(0): • 2 + 3 * 4
(1)  P → • S         (0)    # start rule
(2)  S → • S + M     (0)    # predict from (1)
(3)  S → • M         (0)    # predict from (1)
(4)  M → • M * T     (0)    # predict from (3)
(5)  M → • T         (0)    # predict from (3)
(6)  T → • number    (0)    # predict from (5)

S(1): 2 • + 3 * 4
(1)  T → number •    (0)    # scan from S(0)(6)
(2)  M → T •         (0)    # complete from (1) and S(0)(5)
(3)  M → M • * T     (0)    # complete from (2) and S(0)(4)
(4)  S → M •         (0)    # complete from (2) and S(0)(3)
(5)  S → S • + M     (0)    # complete from (4) and S(0)(2)
(6)  P → S •         (0)    # complete from (4) and S(0)(1)

S(2): 2 + • 3 * 4
(1)  S → S + • M     (0)    # scan from S(1)(5)
(2)  M → • M * T     (2)    # predict from (1)
(3)  M → • T         (2)    # predict from (1)
(4)  T → • number    (2)    # predict from (3)

S(3): 2 + 3 • * 4
(1)  T → number •    (2)    # scan from S(2)(4)
(2)  M → T •         (2)    # complete from (1) and S(2)(3)
(3)  M → M • * T     (2)    # complete from (2) and S(2)(2)
(4)  S → S + M •     (0)    # complete from (2) and S(2)(1)
(5)  S → S • + M     (0)    # complete from (4) and S(0)(2)
(6)  P → S •         (0)    # complete from (4) and S(0)(1)

S(4): 2 + 3 * • 4
(1)  M → M * • T     (2)    # scan from S(3)(3)
(2)  T → • number    (4)    # predict from (1)

S(5): 2 + 3 * 4 • 
(1)  T → number •    (4)    # scan from S(4)(2)
(2)  M → M * T •     (2)    # complete from (1) and S(4)(1)
(3)  M → M • * T     (2)    # complete from (2) and S(2)(2)
(4)  S → S + M •     (0)    # complete from (2) and S(2)(1)
(5)  S → S • + M     (0)    # complete from (4) and S(0)(2)
(6)  P → S •         (0)    # complete from (4) and S(0)(1)

The state (P → S •, 0) represents a completed parse. This state also appears in S(3) and S(1), which are complete
sentences.
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External links

C Implementations
• 'early' (http:/ / cocom. sourceforge. net/ ammunition-13. html) An Earley parser C -library.
• 'C Earley Parser' (https:/ / bitbucket. org/ abki/ c-earley-parser/ src) An Earley parser C. Wikipedia:Link rot

Java Implementations
• PEN (http:/ / linguateca. dei. uc. pt/ index. php?sep=recursos) A Java library that implements the Earley

algorithm.
• Pep (http:/ / www. ling. ohio-state. edu/ ~scott/ #projects-pep) A Java library that implements the Earley

algorithm and provides charts and parse trees as parsing artifacts.
• (http:/ / www. cs. umanitoba. ca/ ~comp4190/ Earley/ Earley. java) A Java implementation of Earley parser.

Perl Implementations
• Marpa::R2 (https:/ / metacpan. org/ module/ Marpa::R2) and Marpa::XS (https:/ / metacpan. org/ module/

Marpa::XS), Perl modules. Marpa (http:/ / jeffreykegler. github. com/ Marpa-web-site/ ) is an Earley's algorithm
that includes the improvements made by Joop Leo, and by Aycock and Horspool.

• Parse::Earley (https:/ / metacpan. org/ module/ Parse::Earley) A Perl module that implements Jay Earley's original
algorithm.

Python Implementations
• Charty (http:/ / www. cavar. me/ damir/ charty/ python/ ) a Python implementation of an Earley parser.
• NLTK (http:/ / nltk. org/ ) a Python toolkit that has an Earley parser.
• Spark (http:/ / pages. cpsc. ucalgary. ca/ ~aycock/ spark/ ) an Object Oriented "little language framework" for

Python that implements an Earley parser.
• earley3.py (http:/ / github. com/ tomerfiliba/ tau/ blob/ master/ earley3. py) A stand-alone implementation of the

algorithm in less than 150 lines of code, including generation of the parsing-forest and samples.
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Common Lisp Implementations
• CL-EARLEY-PARSER (http:/ / www. cliki. net/ CL-EARLEY-PARSER) A Common Lisp library that

implements an Earley parser.

Scheme/Racket Implementations
• Charty-Racket (http:/ / www. cavar. me/ damir/ charty/ scheme/ ) A Scheme / Racket implementation of an Earley

parser.

Resources
• The Accent compiler-compiler (http:/ / accent. compilertools. net/ Entire. html)
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