
Problem Solving and Programming
CSE1001

Prof. Tulasi Prasad Sariki

October 8, 2019

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 1 / 44

Introduction to Functions

FUNCTIONS

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 2 / 44

Introduction to Functions

Triangle Formation Problem
Given three points, write an algorithm and the subsequent Python code to
check if they can form a triangle. Three points can form a triangle, if they
do not fall in a straight line and length of a side of triangle is less than the
sum of length of other two sides of the triangle.
For example, the points (5,10), (20,10) and (15,15) can form a triangle as
they do not fall in a straight line and length of any side is less than sum of
the length of the other two sides

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 3 / 44

Introduction to Functions

Pseudo code for Triangle Formation
Read the three points
If the three points fall on a straight line then print ”No Triangle” and break
Otherwise find length of all three sides
If length of one side is greater than the sum of length of the other two
sides then print ”Triangle” and print ”No Triangle” otherwise

Pseudo code for Fall in Straight Line
input : X and Y coordinates of the three points
IF (pt1.x==pt2.x==pt3.x) THEN
RETURN true
ELIF (pt1.y==pt2.y==pt3.y) THEN
RETURN true
ELSE
RETURN false

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 4 / 44

Introduction to Functions

Pseudocode for Distance between Two Points (Length
of a side in a triangle)
input : X and Y coordinates of the two points
Distance = sqrt((pt1.x-pt2.x)**2 - (pt1.y-pt2.y)**2)
Return distance

Pseudocode for Checking Length Constraint
input : Length of three sides l1, l2, and l3
if l1> l2+l3 or l2>l1+l3 or l3>l1+l2:
return false
else
return true

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 5 / 44

Introduction to Functions

Bigger Problems

If you are asked to find a solution to a major problem, it can
sometimes be very difficult to deal with the complete problem all at
the same time.
For example building a car is a major problem and no one knows how
to make every single part of a car.
A number of different people are involved in building a car, each
responsible for their own bit of the car’s manufacture.
The problem of making the car is thus broken down into smaller
manageable tasks.
Each task can then be further broken down until we are left with a
number of step-by-step sets of instructions in a limited number of
steps.
The instructions for each step are exact and precise.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 6 / 44

Introduction to Functions

Top Down Design

Top Down Design uses the same method to break a programming
problem down into manageable steps.
First of all we break the problem down into smaller steps and then
produce a Top Down Design for each step.
In this way sub-problems are produced which can be refined into
manageable steps.

Top Down Design for Real Life Problem

PROBLEM: To repair a puncture on a bike wheel
ALGORITHM:

1. remove the tyre
2. repair the puncture
3. replace the tyre

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 7 / 44

Introduction to Functions
Step 1: Refinement:

1.Remove the tyre
1.1 turn bike upside down
1.2 lever off one side of the tyre
1.3 remove the tube from inside the tyre

Step 2: Refinement:
2.Repair the puncture Refinement:

2.1 find the position of the hole in the tube
2.2 clean the area around the hole
2.3 apply glue and patch

Step 3: Refinement:
3.Replace the tyre Refinement:

3.1 push tube back inside tyre
3.2 replace tyre back onto wheel
3.3 blow up tyre
3.4 turn bike correct way up

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 8 / 44

Introduction to Functions

Still more Refinement:
more refinement
Sometimes refinements may be required to some of the sub-problems, for
example if we cannot find the hole in the tube, the following refinement
can be made to 2.1:-

Step 2.1: Refinement
2.1 Find the position of the hole in the tube

2.1.1 WHILE hole cannot be found
2.1.2 Dip tube in water
2.1.3 END WHILE

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 9 / 44

Introduction to Functions

Python Functions

A function has a name that is used when we need for the task to be
executed.
Asking that the task be executed is referred to as ”calling” the
function.
Some functions need one or more pieces of input when they are
called. Others do not.
Some functions give back a value; others do not. If a function gives
back a value, this is referred to as ”returning” the value.

Why Functions?

To reduce code duplication and increase program modularity.
A software cannot be implemented by any one person, it takes a team
of programmers to develop such a project.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 10 / 44

Introduction to Functions

Term Number of Lines
of code (LoC)

Equivalent Storage

KLOC 1000 Application Programs
MLOC 1000000 Operating Systems / smart

phones
GLOC 1000000000 Number of lines of code in exis-

tence for various programming
languages

In order to manage the complexity of a large problem, it is broken
down into smaller sub problems.
Then, each sub problem can be focused on and solved separately.
Program routines provide the opportunity for code reuse, so that
systems do not have to be created from ”scratch”

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 11 / 44

Introduction to Functions

What Is a Function or Routine?

A function or routine is a named group of instructions performing
some task.
A routine can be invoked (called) as many times as needed in a given
program
When a routine terminates, execution automatically returns to the
point from which it was called.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 12 / 44

Introduction to Functions

Defining Functions

Functions may be designed as per user’s requirement.
The elements of a function definition are given

The number of items in a parameter list indicates the number of
values that must be passed to the function, called actual arguments
(or simply ”arguments”), such as the variables num1, num2,and num3
below.
>>> num1 = 10
>>> num2 = 25
>>> num3 = 16
>>> avg(num1, num2, num3)
Every function must be defined before it is called.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 13 / 44

Introduction to Functions

Parameters

Actual parameters:
we call simply → arguments
values passed to functions to be operated on.

Formal parameters
we call simply → placeholder
the placeholders names for the arguments passed.

Actual parameters are matched with formal parameters by following
the assignment rules

Operation Interpretation
spam = ’Spam’ Basic Form
spam, ham = ’yum’, ’YUM’ Tuple Assignment (Positional)
[spam, ham] = [’yum’, ’YUM’] List Assignment (Positional)
a, b, c, d = ’spam’ Sequence Assignment (Generalized)
a, *b = ’spam’ Extended Sequence unpacking
spam = ham = ’lunch’ Multiple-target Assignment
spams += 42 Augmented Assignment (Equivalent to spams =

spams + 42)
Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 14 / 44

Introduction to Functions

Assignment statement recap

>>> [a,b,c] = (1,2,3) → Assign tuple of values to list of names
>>> a, c → check output → (1,3)
>>> (a,b,c) = ”ABC” → Assign string of characters to tuple
>>> a, c → check output → (’A’, ’C’)
>>> seq = [1,2,3,4]
>>> a,b,c,d = seq
>>> print(a,b,c,d) → check output → 1 2 3 4
>>> a, b = seq → ValueError: too many values to unpack
(expected 2)
>>> a, *b = seq
>>> a → check output → 1
>>> b → check output → [2,3,4]
>>> *a, b = seq
>>> a → check output → [1,2,3]
>>> b → check output → 4

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 15 / 44

Introduction to Functions

Assignment statement recap

>>> a, *b, c = seq
>>> a → check output → 1
>>> b → check output → [2,3]
>>> c → check output → 4
>>> a, *b = ’spam’
>>> a, b → check output → (’s’, [’p’,’a’,’m’])
>>> a, *b, c = ’spam’
>>> a, b, c → check output → (’s’,[’p’,’a’],’m’)
>>> a, *b, c = range(4)
>>> a, b, c → check output → (0,[1,2],3)

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 16 / 44

Introduction to Functions

Example Functions

def printer(message):
print(’Hello’ + message)

def adder(a,b=1,*c):
return(a+b+c[0])

def times(x,y): → creates and assign function
return x * y → Body executed when called

When Python reaches and runs this def, it creates a new function
object that packages the function’s code and assigns the object to the
name times.

Calls

>>> times(2,4) → Arguments in parenthesis → 8
>>> x = times(3.14,4) → saved the result object-x → 12.56
>>> times(’Ni’,4) → Functions are typeless → check out →
’NiNiNiNi’

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 17 / 44

Example Functions

functions

def i n t e r s e c t (seq1 , seq2) :
r e s = [] # s t a r t empty
f o r x i n seq1 : #scan seq1

i f x i n seq2 : # common item
r e s . append (x) #add to end and r e t u r n

p r i n t (r e s)

>>> s1 = ”SPAM”
>>> s2 = ”SCAM”
>>> intersect(s1,s2) → output → [’S’, ’A’, ’M’]

Equivalent Comprehension

>>> [x for x in s1 if x in s2] → check output → [’S’,’A’,’M’]
works for list also:
x = intersect([1,2,3],(1,4)) → mixed type data → check output → [1]

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 18 / 44

Introduction to function

Def Statements

creates a function object and assigns it to a name
def is a true executable statement: when it runs, it creates a new
function object and assigns it to a name
Because it’s a statement, a def can appear anywhere a statement
can—even nested in other statements

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 19 / 44

Introduction to function

Def Statements

if test:
def func(): # Define func this way

else:
def func(): # Or else this way...

func() # Call the version selected and built

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 20 / 44

Introduction to function

Function definition in selection statement Example

a = 4
if a%2==0:
def func():
print (’even’)

else:
def func():
print(’odd’)

func()
Output:
even

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 21 / 44

Introduction to function

Function definition in selection statement Example

a = 4
if a%2==0:
def func():
print (’even’)

else:
def func():
print1(’odd’)

error no function print1 is defined
func()
Error in only condition not satisfied item is found.
Otherwise code execute normal
Output:
even

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 22 / 44

Introduction to function

Function definition in selection statement Example

a = 5
if a%2==0:
def func():
print (’even’)

else:
def func():
print1(’odd’) # error no function print1 is defined

func()
Output:
error

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 23 / 44

Introduction to function

Function Call through variable

def one():
print(’one’)

def two():
print(’two’)

def three():
print(’three’)

Example
a = 3
if a == 1:
call_Func=one

elif a == 2:
call_Func=two

else:
call_Func=three

call_Func()
Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 24 / 44

Introduction to function

Scope of Variables

Enclosing module is a global scope
Global scope spans a single file only
Assigned names are local unless declared global or nonlocal
Each call to a function creates a new local scope

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 25 / 44

Introduction to function

Name Resolution: The LEGB Rule

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 26 / 44

Introduction to function

Scope Example

Global scope
X = 99
X and func assigned in module: global
def func(Y):
Y and Z assigned in function: locals
Local scope
Z = X + Y # X is a global

return Z
func(1) # func in module: result=100
Global names: X, func
Local names: Y, Z
X = 88 # Global X
def func():
X = 99

Local X: hides global
func()
print(X) # Prints 88: unchanged

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 27 / 44

Introduction to function

Accessing Global Variables

X = 88 # Global X
def func():
global X
X = 99 # Global X: outside def

func()
print(X) # Prints 99

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 28 / 44

Introduction to function

Accessing Global Variables

y, z = 1, 2 # Global variables in module
def all_global():
global x # Declare globals assigned

x = y + z
No need to declare y, z: LEGB rule

Global Variables and Global Scope
The use of global variables is generally considered to be bad
programming style.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 29 / 44

Introduction to function

Nested Functions

X = 99 # Global scope name: not used
def f1():
X = 88 # Enclosing def local
def f2():
print(X)

Reference made in nested def
f2()

f1() # Prints 88: enclosing def local

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 30 / 44

Introduction to function

Return Functions

Following code defines a function that makes and returns another
function
def f1():
X = 88
def f2():
print(X)

Remembers X in enclosing def scope
return f2 # Return f2 but don’t call it

action = f1() # Make, return function
action() # Call it now: prints 88

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 31 / 44

Introduction to function

Value-Returning Functions

Program routine called for its return value, and is therefore similar to
a mathematical function.
Function avg takes three arguments (n1, n2, and n3) and returns the
average of the three.
The function call avg(10, 25, 16), therefore, is an expression that
evaluates to the returned function value.
This is indicated in the function’s return statement of the form return
expr, where expr may be any expression.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 32 / 44

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 33 / 44

Introduction to function

Non-Value-Returning Functions

A non-value-returning function is called not for a returned value, but
for its side effects.
A side effect is an action other than returning a function value, such
as displaying output on the screen.

In this example, function display Welcome is called only for the
side-effect of the screen output produced.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 34 / 44

Introduction to function

Returning Multiple Values

>>> def multiple(x, y):
x = 2 # Changes local names only
y = [3, 4]

return x, y
Return multiple new values in a tuple

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 35 / 44

Triangle Check

Python code for Triangle Check

x=i n t (input (” Enter ␣x␣−␣Coord inate ␣ o f ␣ po in t ␣ 1 : ␣”))
y=i n t (input (” Enter ␣y␣−␣Coord inate ␣ o f ␣ po in t ␣ 1 : ␣”))
pt1=(x , y)
x=i n t (input (” Enter ␣x␣−␣Coord inate ␣ o f ␣ po in t ␣ 2 : ␣”))
y=i n t (input (” Enter ␣y␣−␣Coord inate ␣ o f ␣ po in t ␣ 2 : ␣”))
pt2=(x , y)
x=i n t (input (” Enter ␣x␣−␣Coord inate ␣ o f ␣ po in t ␣ 3 : ␣”))
y=i n t (input (” Enter ␣y␣−␣Coord inate ␣ o f ␣ po in t ␣ 3 : ␣”))
pt3=(x , y)

def f a l l _ s t _ l i n e (pt1 , pt2 , pt3) :
i f x − c o o r d i n a t e s o f a l l p o i n t s a re equa l or
y− c o o r d i n a t e s o f a l l p o i n t s a re equa l
then p o i n t s l i e s on the s t r a i g h t l i n e
i f (pt1 [0]==pt2 [0]==pt3 [0]) or (pt1 [1]==pt2 [1]==pt3 [1]) :

return True
e l s e :

return Fa l s e
Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 36 / 44

Triangle Check

Python code for Triangle Check- Contd..

import math
def ca l c_d i s t anc e (pt1 , pt2 , pt3) :

#Distance between pt1 and pt2
d1=math . s q r t ((pt1 [0]− pt2 [0])∗∗2+(pt1 [1]− pt2 [1]) ∗ ∗2)
#Distance between pt2 and pt3
d2=math . s q r t ((pt2 [0]− pt3 [0])∗∗2+(pt2 [1]− pt3 [1]) ∗ ∗2)
#Distance between pt1 and pt3
d3=math . s q r t ((pt1 [0]− pt3 [0])∗∗2+(pt1 [1]− pt3 [1]) ∗ ∗2)
return (d1 , d2 , d3)

def d i s t_check (d i s t) :
i f d i s t [0] >(d i s t [1]+ d i s t [2]) :

return True
e l i f d i s t [1] >(d i s t [0]+ d i s t [2]) :

return True
e l i f d i s t [2] >(d i s t [1]+ d i s t [0]) :

return True
e l s e :

return Fa l s e
Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 37 / 44

Triangle Check

Python code for Triangle Check- Contd..

No=Fa l s e
i f f a l l _ s t _ l i n e (pt1 , pt2 , pt3) :

p r i n t (”No␣Tr i ang l e ”)
No=Fa l s e

e l s e :
d i s t=ca l c_d i s t anc e (pt1 , pt2 , pt3)
i f d i s t_check (d i s t) :

p r i n t (”No␣Tr i ang l e ”)
No=Fa l s e

i f not No :
p r i n t (” T r i ang l e ”)

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 38 / 44

Example Functions

Python code for Max of 3 nos

def max_of_two (x , y) :
i f x > y :

return x
return y

def max_of_three (x , y , z) :
return max_of_two (x , max_of_two (y , z))

p r i n t (max_of_three (3 , 6 , −5))

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 39 / 44

Example Functions

Python code for Linear Search

def s e q u e n t i a l S e a r c h (a l i s t , i tem) :
pos = 0
found = Fa l s e
whi le pos < l en (a l i s t) and not found :

i f a l i s t [pos] == item :
found = True

e l s e :
pos = pos+1

return found
t e s t l i s t = [1 , 2 , 32 , 8 , 17 , 19 , 42 , 13 , 0]
p r i n t (s e q u e n t i a l S e a r c h (t e s t l i s t , 3))
p r i n t (s e q u e n t i a l S e a r c h (t e s t l i s t , 13))

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 40 / 44

Example Functions

Python code for Bubble Sort

def bubb l eSo r t (a l i s t) :
f o r passnum i n range (l en (a l i s t)−1 ,0 ,−1):

f o r i i n range (passnum) :
i f a l i s t [i]> a l i s t [i +1] :

temp = a l i s t [i]
a l i s t [i] = a l i s t [i +1]
a l i s t [i +1] = temp

a l i s t = [54 , 26 , 93 , 17 , 77 , 31 , 44 , 55 , 20]
bubb l eSo r t (a l i s t)
p r i n t (a l i s t)

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 41 / 44

Example Functions

Python code for Reverse a string

def s t r i n g _ r e v e r s e (s t r 1) :

r s t r 1 = ’ ’
i nd ex = l en (s t r 1)
whi le i n d e x > 0 :

r s t r 1 += s t r 1 [i nd ex − 1]
i nd e x = index − 1

return r s t r 1
p r i n t (s t r i n g _ r e v e r s e (’ 1234 abcd ’))

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 42 / 44

Exercises

Python code for Reverse a string
1. Compute area of circle using all possible function prototypes.
2. Compute Simple interest for given principle(P), number of years(N)

and rate of interest(R). If R value is not given then consider R value
as 10.5 %. Use keyword arguments for the same.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 43 / 44

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 44 / 44

