
1. Correlation
The following plots help to examine how well correlated two variables are.

Scatterplot
The most frequently used plot for data analysis is undoubtedly the scatterplot. Whenever you want to
understand the nature of relationship between two variables, invariably the first choice is the
scatterplot.

It can be drawn using geom_point(). Additionally, geom_smooth which draws a smoothing line
(based on loess) by default, can be tweaked to draw the line of best fit by setting method='lm'.

install.packages("ggplot2")
load package and data
options(scipen=999) # turn-off scientific notation like 1e+48
library(ggplot2)
theme_set(theme_bw()) # pre-set the bw theme.
data("midwest", package = "ggplot2")
midwest <- read.csv("http://goo.gl/G1K41K") # bkup data source

Scatterplot
gg <- ggplot(midwest, aes(x=area, y=poptotal)) +
 geom_point(aes(col=state, size=popdensity)) +
 geom_smooth(method="loess", se=F) +
 xlim(c(0, 0.1)) +
 ylim(c(0, 500000)) +
 labs(subtitle="Area Vs Population",
 y="Population",
 x="Area",
 title="Scatterplot",
 caption = "Source: midwest")

plot(gg)

[Back to Top]

Scatterplot With Encircling
When presenting the results, sometimes I would encirlce certain special group of points or region in the
chart so as to draw the attention to those peculiar cases. This can be conveniently done using the
geom_encircle() in ggalt package.

Within geom_encircle(), set the data to a new dataframe that contains only the points (rows) or
interest. Moreover, You can expand the curve so as to pass just outside the points. The color and
size (thickness) of the curve can be modified as well. See below example.

install 'ggalt' pkg
devtools::install_github("hrbrmstr/ggalt")
options(scipen = 999)
library(ggplot2)
library(ggalt)
midwest_select <- midwest[midwest$poptotal > 350000 &
 midwest$poptotal <= 500000 &
 midwest$area > 0.01 &
 midwest$area < 0.1,]

Plot
ggplot(midwest, aes(x=area, y=poptotal)) +
 geom_point(aes(col=state, size=popdensity)) + # draw points
 geom_smooth(method="loess", se=F) +
 xlim(c(0, 0.1)) +
 ylim(c(0, 500000)) + # draw smoothing line

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

 geom_encircle(aes(x=area, y=poptotal),
 data=midwest_select,
 color="red",
 size=2,
 expand=0.08) + # encircle
 labs(subtitle="Area Vs Population",
 y="Population",
 x="Area",
 title="Scatterplot + Encircle",
 caption="Source: midwest")

[Back to Top]

Jitter Plot

Let’s look at a new data to draw the scatterplot. This time, I will use the mpg dataset to plot city
mileage (cty) vs highway mileage (hwy).

load package and data
library(ggplot2)
data(mpg, package="ggplot2") # alternate source: "http://goo.gl/uEeRGu")
theme_set(theme_bw()) # pre-set the bw theme.

g <- ggplot(mpg, aes(cty, hwy))

Scatterplot
g + geom_point() +
 geom_smooth(method="lm", se=F) +
 labs(subtitle="mpg: city vs highway mileage",
 y="hwy",

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

 x="cty",
 title="Scatterplot with overlapping points",
 caption="Source: midwest")

What we have here is a scatterplot of city and highway mileage in mpg dataset. We have seen a similar
scatterplot and this looks neat and gives a clear idea of how the city mileage (cty) and highway
mileage (hwy) are well correlated.

But, this innocent looking plot is hiding something. Can you find out?

dim(mpg)

The original data has 234 data points but the chart seems to display fewer points. What has happened?
This is because there are many overlapping points appearing as a single dot. The fact that both cty and
hwy are integers in the source dataset made it all the more convenient to hide this detail. So just be
extra careful the next time you make scatterplot with integers.

So how to handle this? There are few options. We can make a jitter plot with jitter_geom(). As
the name suggests, the overlapping points are randomly jittered around its original position based on a
threshold controlled by the width argument.

load package and data
library(ggplot2)
data(mpg, package="ggplot2")
mpg <- read.csv("http://goo.gl/uEeRGu")

Scatterplot

theme_set(theme_bw()) # pre-set the bw theme.
g <- ggplot(mpg, aes(cty, hwy))
g + geom_jitter(width = .5, size=1) +
 labs(subtitle="mpg: city vs highway mileage",
 y="hwy",
 x="cty",
 title="Jittered Points")

More points are revealed now. More the width, more the points are moved jittered from their original
position.

[Back to Top]

Counts Chart
The second option to overcome the problem of data points overlap is to use what is called a counts
chart. Whereever there is more points overlap, the size of the circle gets bigger.

load package and data
library(ggplot2)
data(mpg, package="ggplot2")
mpg <- read.csv("http://goo.gl/uEeRGu")

Scatterplot
theme_set(theme_bw()) # pre-set the bw theme.
g <- ggplot(mpg, aes(cty, hwy))
g + geom_count(col="tomato3", show.legend=F) +
 labs(subtitle="mpg: city vs highway mileage",
 y="hwy",

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

 x="cty",
 title="Counts Plot")

[Back to Top]

Bubble plot
While scatterplot lets you compare the relationship between 2 continuous variables, bubble chart serves
well if you want to understand relationship within the underlying groups based on:

1. A Categorical variable (by changing the color) and
2. Another continuous variable (by changing the size of points).

In simpler words, bubble charts are more suitable if you have 4-Dimensional data where two of them
are numeric (X and Y) and one other categorical (color) and another numeric variable (size).

The bubble chart clearly distinguishes the range of displ between the manufacturers and how the
slope of lines-of-best-fit varies, providing a better visual comparison between the groups.

load package and data
library(ggplot2)
data(mpg, package="ggplot2")
mpg <- read.csv("http://goo.gl/uEeRGu")

mpg_select <- mpg[mpg$manufacturer %in% c("audi", "ford", "honda", "hyundai"),]

Scatterplot
theme_set(theme_bw()) # pre-set the bw theme.

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

g <- ggplot(mpg_select, aes(displ, cty)) +
 labs(subtitle="mpg: Displacement vs City Mileage",
 title="Bubble chart")

g + geom_jitter(aes(col=manufacturer, size=hwy)) +
 geom_smooth(aes(col=manufacturer), method="lm", se=F)

[Back to Top]

Animated Bubble chart

An animated bubble chart can be implemented using the gganimate package. It is same as the
bubble chart, but, you have to show how the values change over a fifth dimension (typically time).

The key thing to do is to set the aes(frame) to the desired column on which you want to animate.
Rest of the procedure related to plot construction is the same. Once the plot is constructed, you can
animate it using gganimate() by setting a chosen interval.

Source: https://github.com/dgrtwo/gganimate
install.packages("cowplot") # a gganimate dependency
devtools::install_github("dgrtwo/gganimate")
library(ggplot2)
library(gganimate)
library(gapminder)
theme_set(theme_bw()) # pre-set the bw theme.

g <- ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, frame = year)) +
 geom_point() +

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

 geom_smooth(aes(group = year),
 method = "lm",
 show.legend = FALSE) +
 facet_wrap(~continent, scales = "free") +
 scale_x_log10() # convert to log scale

gganimate(g, interval=0.2)

[Back to Top]

Marginal Histogram / Boxplot
If you want to show the relationship as well as the distribution in the same chart, use the marginal
histogram. It has a histogram of the X and Y variables at the margins of the scatterplot.

This can be implemented using the ggMarginal() function from the ‘ggExtra’ package. Apart
from a histogram, you could choose to draw a marginal boxplot or density plot by setting the
respective type option.

load package and data
library(ggplot2)
library(ggExtra)
data(mpg, package="ggplot2")
mpg <- read.csv("http://goo.gl/uEeRGu")

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

Scatterplot
theme_set(theme_bw()) # pre-set the bw theme.
mpg_select <- mpg[mpg$hwy >= 35 & mpg$cty > 27,]
g <- ggplot(mpg, aes(cty, hwy)) +
 geom_count() +
 geom_smooth(method="lm", se=F)

ggMarginal(g, type = "histogram", fill="transparent")
ggMarginal(g, type = "boxplot", fill="transparent")
ggMarginal(g, type = "density", fill="transparent")

[Back to Top]

Correlogram
Correlogram let’s you examine the corellation of multiple continuous variables present in the same
dataframe. This is conveniently implemented using the ggcorrplot package.

devtools::install_github("kassambara/ggcorrplot")
library(ggplot2)
library(ggcorrplot)

Correlation matrix
data(mtcars)
corr <- round(cor(mtcars), 1)

Plot
ggcorrplot(corr, hc.order = TRUE,
 type = "lower",
 lab = TRUE,
 lab_size = 3,
 method="circle",
 colors = c("tomato2", "white", "springgreen3"),

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

 title="Correlogram of mtcars",
 ggtheme=theme_bw)

[Back to Top]

2. Deviation
Compare variation in values between small number of items (or categories) with respect to a fixed
reference.

Diverging bars
Diverging Bars is a bar chart that can handle both negative and positive values. This can be
implemented by a smart tweak with geom_bar(). But the usage of geom_bar() can be quite
confusing. Thats because, it can be used to make a bar chart as well as a histogram. Let me explain.

By default, geom_bar() has the stat set to count. That means, when you provide just a
continuous X variable (and no Y variable), it tries to make a histogram out of the data.

In order to make a bar chart create bars instead of histogram, you need to do two things.

1. Set stat=identity
2. Provide both x and y inside aes() where, x is either character or factor and y is

numeric.

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

In order to make sure you get diverging bars instead of just bars, make sure, your categorical variable
has 2 categories that changes values at a certain threshold of the continuous variable. In below
example, the mpg from mtcars dataset is normalised by computing the z score. Those vehicles with
mpg above zero are marked green and those below are marked red.

library(ggplot2)
theme_set(theme_bw())

Data Prep
data("mtcars") # load data
mtcars$`car name` <- rownames(mtcars) # create new column for car names
mtcars$mpg_z <- round((mtcars$mpg - mean(mtcars$mpg))/sd(mtcars$mpg), 2) # compute
normalized mpg
mtcars$mpg_type <- ifelse(mtcars$mpg_z < 0, "below", "above") # above / below avg
flag
mtcars <- mtcars[order(mtcars$mpg_z),] # sort
mtcars$`car name` <- factor(mtcars$`car name`, levels = mtcars$`car name`) #
convert to factor to retain sorted order in plot.

Diverging Barcharts
ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) +
 geom_bar(stat='identity', aes(fill=mpg_type), width=.5) +
 scale_fill_manual(name="Mileage",
 labels = c("Above Average", "Below Average"),
 values = c("above"="#00ba38", "below"="#f8766d")) +
 labs(subtitle="Normalised mileage from 'mtcars'",
 title= "Diverging Bars") +
 coord_flip()

[Back to Top]

Diverging Lollipop Chart
Lollipop chart conveys the same information as bar chart and diverging bar. Except that it looks more
modern. Instead of geom_bar, I use geom_point and geom_segment to get the lollipops right.
Let’s draw a lollipop using the same data I prepared in the previous example of diverging bars.

library(ggplot2)
theme_set(theme_bw())

ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) +
 geom_point(stat='identity', fill="black", size=6) +
 geom_segment(aes(y = 0,
 x = `car name`,
 yend = mpg_z,
 xend = `car name`),
 color = "black") +
 geom_text(color="white", size=2) +
 labs(title="Diverging Lollipop Chart",
 subtitle="Normalized mileage from 'mtcars': Lollipop") +
 ylim(-2.5, 2.5) +
 coord_flip()

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

[Back to Top]

Diverging Dot Plot
Dot plot conveys similar information. The principles are same as what we saw in Diverging bars,
except that only point are used. Below example uses the same data prepared in the diverging bars
example.

library(ggplot2)
theme_set(theme_bw())

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#Diverging%20Bars
http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#Diverging%20Bars
http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

Plot
ggplot(mtcars, aes(x=`car name`, y=mpg_z, label=mpg_z)) +
 geom_point(stat='identity', aes(col=mpg_type), size=6) +
 scale_color_manual(name="Mileage",
 labels = c("Above Average", "Below Average"),
 values = c("above"="#00ba38", "below"="#f8766d")) +
 geom_text(color="white", size=2) +
 labs(title="Diverging Dot Plot",
 subtitle="Normalized mileage from 'mtcars': Dotplot") +
 ylim(-2.5, 2.5) +
 coord_flip()

[Back to Top]

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

Area Chart
Area charts are typically used to visualize how a particular metric (such as % returns from a stock)
performed compared to a certain baseline. Other types of %returns or %change data are also commonly
used. The geom_area() implements this.

library(ggplot2)
library(quantmod)
data("economics", package = "ggplot2")

Compute % Returns
economics$returns_perc <- c(0, diff(economics$psavert)/economics$psavert[-
length(economics$psavert)])

Create break points and labels for axis ticks
brks <- economics$date[seq(1, length(economics$date), 12)]
lbls <- lubridate::year(economics$date[seq(1, length(economics$date), 12)])

Plot
ggplot(economics[1:100,], aes(date, returns_perc)) +
 geom_area() +
 scale_x_date(breaks=brks, labels=lbls) +
 theme(axis.text.x = element_text(angle=90)) +
 labs(title="Area Chart",
 subtitle = "Perc Returns for Personal Savings",
 y="% Returns for Personal savings",
 caption="Source: economics")

[Back to Top]

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

3. Ranking
Used to compare the position or performance of multiple items with respect to each other. Actual
values matters somewhat less than the ranking.

Ordered Bar Chart
Ordered Bar Chart is a Bar Chart that is ordered by the Y axis variable. Just sorting the dataframe by
the variable of interest isn’t enough to order the bar chart. In order for the bar chart to retain the order
of the rows, the X axis variable (i.e. the categories) has to be converted into a factor.

Let’s plot the mean city mileage for each manufacturer from mpg dataset. First, aggregate the data and
sort it before you draw the plot. Finally, the X variable is converted to a factor.

Let’s see how that is done.

Prepare data: group mean city mileage by manufacturer.
cty_mpg <- aggregate(mpg$cty, by=list(mpg$manufacturer), FUN=mean) # aggregate
colnames(cty_mpg) <- c("make", "mileage") # change column names
cty_mpg <- cty_mpg[order(cty_mpg$mileage),] # sort
cty_mpg$make <- factor(cty_mpg$make, levels = cty_mpg$make) # to retain the order
in plot.
head(cty_mpg, 4)
#> make mileage
#> 9 lincoln 11.33333
#> 8 land rover 11.50000
#> 3 dodge 13.13514
#> 10 mercury 13.25000

The X variable is now a factor, let’s plot.

library(ggplot2)
theme_set(theme_bw())

Draw plot
ggplot(cty_mpg, aes(x=make, y=mileage)) +
 geom_bar(stat="identity", width=.5, fill="tomato3") +
 labs(title="Ordered Bar Chart",
 subtitle="Make Vs Avg. Mileage",
 caption="source: mpg") +
 theme(axis.text.x = element_text(angle=65, vjust=0.6))

[Back to Top]

Lollipop Chart
Lollipop charts conveys the same information as in bar charts. By reducing the thick bars into thin
lines, it reduces the clutter and lays more emphasis on the value. It looks nice and modern.

library(ggplot2)
theme_set(theme_bw())

Plot
ggplot(cty_mpg, aes(x=make, y=mileage)) +
 geom_point(size=3) +
 geom_segment(aes(x=make,
 xend=make,
 y=0,
 yend=mileage)) +
 labs(title="Lollipop Chart",
 subtitle="Make Vs Avg. Mileage",
 caption="source: mpg") +
 theme(axis.text.x = element_text(angle=65, vjust=0.6))

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

[Back to Top]

Dot Plot
Dot plots are very similar to lollipops, but without the line and is flipped to horizontal position. It
emphasizes more on the rank ordering of items with respect to actual values and how far apart are the
entities with respect to each other.

library(ggplot2)
library(scales)
theme_set(theme_classic())

Plot
ggplot(cty_mpg, aes(x=make, y=mileage)) +
 geom_point(col="tomato2", size=3) + # Draw points
 geom_segment(aes(x=make,
 xend=make,
 y=min(mileage),
 yend=max(mileage)),
 linetype="dashed",
 size=0.1) + # Draw dashed lines
 labs(title="Dot Plot",
 subtitle="Make Vs Avg. Mileage",
 caption="source: mpg") +
 coord_flip()

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

[Back to Top]

Slope Chart
Slope charts are an excellent way of comparing the positional placements between 2 points on time. At
the moment, there is no builtin function to construct this. Following code serves as a pointer about how
you may approach this.

library(ggplot2)
library(scales)
theme_set(theme_classic())

prep data
df <-
read.csv("https://raw.githubusercontent.com/selva86/datasets/master/gdppercap.csv")
colnames(df) <- c("continent", "1952", "1957")
left_label <- paste(df$continent, round(df$`1952`),sep=", ")
right_label <- paste(df$continent, round(df$`1957`),sep=", ")
df$class <- ifelse((df$`1957` - df$`1952`) < 0, "red", "green")

Plot
p <- ggplot(df) + geom_segment(aes(x=1, xend=2, y=`1952`, yend=`1957`, col=class),
size=.75, show.legend=F) +
 geom_vline(xintercept=1, linetype="dashed", size=.1) +
 geom_vline(xintercept=2, linetype="dashed", size=.1) +
 scale_color_manual(labels = c("Up", "Down"),
 values = c("green"="#00ba38",
"red"="#f8766d")) + # color of lines
 labs(x="", y="Mean GdpPerCap") + # Axis labels

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

 xlim(.5, 2.5) + ylim(0,(1.1*(max(df$`1952`, df$`1957`)))) # X
and Y axis limits

Add texts
p <- p + geom_text(label=left_label, y=df$`1952`, x=rep(1, NROW(df)), hjust=1.1,
size=3.5)
p <- p + geom_text(label=right_label, y=df$`1957`, x=rep(2, NROW(df)), hjust=-0.1,
size=3.5)
p <- p + geom_text(label="Time 1", x=1, y=1.1*(max(df$`1952`, df$`1957`)),
hjust=1.2, size=5) # title
p <- p + geom_text(label="Time 2", x=2, y=1.1*(max(df$`1952`, df$`1957`)), hjust=-
0.1, size=5) # title

Minify theme
p + theme(panel.background = element_blank(),
 panel.grid = element_blank(),
 axis.ticks = element_blank(),
 axis.text.x = element_blank(),
 panel.border = element_blank(),
 plot.margin = unit(c(1,2,1,2), "cm"))

[Back to Top]

Dumbbell Plot
Dumbbell charts are a great tool if you wish to: 1. Visualize relative positions (like growth and decline)
between two points in time. 2. Compare distance between two categories.

In order to get the correct ordering of the dumbbells, the Y variable should be a factor and the levels of
the factor variable should be in the same order as it should appear in the plot.

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

devtools::install_github("hrbrmstr/ggalt")
library(ggplot2)
library(ggalt)
theme_set(theme_classic())

health <-
read.csv("https://raw.githubusercontent.com/selva86/datasets/master/health.csv")
health$Area <- factor(health$Area, levels=as.character(health$Area)) # for right
ordering of the dumbells

health$Area <- factor(health$Area)
gg <- ggplot(health, aes(x=pct_2013, xend=pct_2014, y=Area, group=Area)) +
 geom_dumbbell(color="#a3c4dc",
 size=0.75,
 point.colour.l="#0e668b") +
 scale_x_continuous(label=percent) +
 labs(x=NULL,
 y=NULL,
 title="Dumbbell Chart",
 subtitle="Pct Change: 2013 vs 2014",
 caption="Source: https://github.com/hrbrmstr/ggalt") +
 theme(plot.title = element_text(hjust=0.5, face="bold"),
 plot.background=element_rect(fill="#f7f7f7"),
 panel.background=element_rect(fill="#f7f7f7"),
 panel.grid.minor=element_blank(),
 panel.grid.major.y=element_blank(),
 panel.grid.major.x=element_line(),
 axis.ticks=element_blank(),
 legend.position="top",
 panel.border=element_blank())
plot(gg)

[Back to Top]

4. Distribution
When you have lots and lots of data points and want to study where and how the data points are
distributed.

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

Histogram

By default, if only one variable is supplied, the geom_bar() tries to calculate the count. In order for
it to behave like a bar chart, the stat=identity option has to be set and x and y values must be
provided.

Histogram on a continuous variable

Histogram on a continuous variable can be accomplished using either geom_bar() or
geom_histogram(). When using geom_histogram(), you can control the number of bars
using the bins option. Else, you can set the range covered by each bin using binwidth. The value of
binwidth is on the same scale as the continuous variable on which histogram is built. Since,
geom_histogram gives facility to control both number of bins as well as binwidth, it is the
preferred option to create histogram on continuous variables.

library(ggplot2)
theme_set(theme_classic())

Histogram on a Continuous (Numeric) Variable
g <- ggplot(mpg, aes(displ)) + scale_fill_brewer(palette = "Spectral")

g + geom_histogram(aes(fill=class),
 binwidth = .1,
 col="black",
 size=.1) + # change binwidth
 labs(title="Histogram with Auto Binning",
 subtitle="Engine Displacement across Vehicle Classes")

g + geom_histogram(aes(fill=class),
 bins=5,
 col="black",
 size=.1) + # change number of bins
 labs(title="Histogram with Fixed Bins",
 subtitle="Engine Displacement across Vehicle Classes")

[Back to Top]

Histogram on a categorical variable

Histogram on a categorical variable would result in a frequency chart showing bars for each category.
By adjusting width, you can adjust the thickness of the bars.

library(ggplot2)
theme_set(theme_classic())

Histogram on a Categorical variable
g <- ggplot(mpg, aes(manufacturer))
g + geom_bar(aes(fill=class), width = 0.5) +
 theme(axis.text.x = element_text(angle=65, vjust=0.6)) +
 labs(title="Histogram on Categorical Variable",
 subtitle="Manufacturer across Vehicle Classes")

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

[Back to Top]

Density plot
library(ggplot2)
theme_set(theme_classic())

Plot
g <- ggplot(mpg, aes(cty))
g + geom_density(aes(fill=factor(cyl)), alpha=0.8) +
 labs(title="Density plot",
 subtitle="City Mileage Grouped by Number of cylinders",
 caption="Source: mpg",
 x="City Mileage",
 fill="# Cylinders")

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

[Back to Top]

Box Plot
Box plot is an excellent tool to study the distribution. It can also show the distributions within multiple
groups, along with the median, range and outliers if any.

The dark line inside the box represents the median. The top of box is 75%ile and bottom of box is
25%ile. The end points of the lines (aka whiskers) is at a distance of 1.5*IQR, where IQR or Inter
Quartile Range is the distance between 25th and 75th percentiles. The points outside the whiskers are
marked as dots and are normally considered as extreme points.

Setting varwidth=T adjusts the width of the boxes to be proportional to the number of observation it
contains.

library(ggplot2)
theme_set(theme_classic())

Plot
g <- ggplot(mpg, aes(class, cty))
g + geom_boxplot(varwidth=T, fill="plum") +
 labs(title="Box plot",
 subtitle="City Mileage grouped by Class of vehicle",
 caption="Source: mpg",
 x="Class of Vehicle",
 y="City Mileage")

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

library(ggthemes)
g <- ggplot(mpg, aes(class, cty))
g + geom_boxplot(aes(fill=factor(cyl))) +
 theme(axis.text.x = element_text(angle=65, vjust=0.6)) +
 labs(title="Box plot",
 subtitle="City Mileage grouped by Class of vehicle",
 caption="Source: mpg",
 x="Class of Vehicle",
 y="City Mileage")

[Back to Top]

Dot + Box Plot
On top of the information provided by a box plot, the dot plot can provide more clear information in the
form of summary statistics by each group. The dots are staggered such that each dot represents one
observation. So, in below chart, the number of dots for a given manufacturer will match the number of
rows of that manufacturer in source data.

library(ggplot2)
theme_set(theme_bw())

plot
g <- ggplot(mpg, aes(manufacturer, cty))
g + geom_boxplot() +
 geom_dotplot(binaxis='y',
 stackdir='center',
 dotsize = .5,
 fill="red") +
 theme(axis.text.x = element_text(angle=65, vjust=0.6)) +
 labs(title="Box plot + Dot plot",
 subtitle="City Mileage vs Class: Each dot represents 1 row in source data",
 caption="Source: mpg",
 x="Class of Vehicle",
 y="City Mileage")

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

[Back to Top]

Tufte Boxplot

Tufte box plot, provided by ggthemes package is inspired by the works of Edward Tufte. Tufte’s Box
plot is just a box plot made minimal and visually appealing.

library(ggthemes)
library(ggplot2)
theme_set(theme_tufte()) # from ggthemes

plot
g <- ggplot(mpg, aes(manufacturer, cty))
g + geom_tufteboxplot() +
 theme(axis.text.x = element_text(angle=65, vjust=0.6)) +
 labs(title="Tufte Styled Boxplot",
 subtitle="City Mileage grouped by Class of vehicle",
 caption="Source: mpg",
 x="Class of Vehicle",
 y="City Mileage")

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

[Back to Top]

Violin Plot
A violin plot is similar to box plot but shows the density within groups. Not much info provided as in
boxplots. It can be drawn using geom_violin().

library(ggplot2)
theme_set(theme_bw())

plot
g <- ggplot(mpg, aes(class, cty))
g + geom_violin() +
 labs(title="Violin plot",
 subtitle="City Mileage vs Class of vehicle",
 caption="Source: mpg",
 x="Class of Vehicle",
 y="City Mileage")

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

Population Pyramid
Population pyramids offer a unique way of visualizing how much population or what percentage of
population fall under a certain category. The below pyramid is an excellent example of how many users
are retained at each stage of a email marketing campaign funnel.

library(ggplot2)
library(ggthemes)
options(scipen = 999) # turns of scientific notations like 1e+40

Read data
email_campaign_funnel <-
read.csv("https://raw.githubusercontent.com/selva86/datasets/master/email_campaign_
funnel.csv")

X Axis Breaks and Labels
brks <- seq(-15000000, 15000000, 5000000)
lbls = paste0(as.character(c(seq(15, 0, -5), seq(5, 15, 5))), "m")

Plot
ggplot(email_campaign_funnel, aes(x = Stage, y = Users, fill = Gender)) + # Fill
column
 geom_bar(stat = "identity", width = .6) + # draw
the bars
 scale_y_continuous(breaks = brks, # Breaks
 labels = lbls) + # Labels
 coord_flip() + # Flip axes

 labs(title="Email Campaign Funnel") +
 theme_tufte() + # Tufte theme from ggfortify
 theme(plot.title = element_text(hjust = .5),
 axis.ticks = element_blank()) + # Centre plot
title
 scale_fill_brewer(palette = "Dark2") # Color palette

[Back to Top]

5. Composition

Waffle Chart
Waffle charts is a nice way of showing the categorical composition of the total population. Though
there is no direct function, it can be articulated by smartly maneuvering the ggplot2 using
geom_tile() function. The below template should help you create your own waffle.

var <- mpg$class # the categorical data

Prep data (nothing to change here)
nrows <- 10
df <- expand.grid(y = 1:nrows, x = 1:nrows)
categ_table <- round(table(var) * ((nrows*nrows)/(length(var))))
categ_table
#> 2seater compact midsize minivan pickup subcompact suv
#> 2 20 18 5 14 15 26

df$category <- factor(rep(names(categ_table), categ_table))

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

NOTE: if sum(categ_table) is not 100 (i.e. nrows^2), it will need adjustment to
make the sum to 100.

Plot
ggplot(df, aes(x = x, y = y, fill = category)) +
 geom_tile(color = "black", size = 0.5) +
 scale_x_continuous(expand = c(0, 0)) +
 scale_y_continuous(expand = c(0, 0), trans = 'reverse') +
 scale_fill_brewer(palette = "Set3") +
 labs(title="Waffle Chart", subtitle="'Class' of vehicles",
 caption="Source: mpg") +
 theme(panel.border = element_rect(size = 2),
 plot.title = element_text(size = rel(1.2)),
 axis.text = element_blank(),
 axis.title = element_blank(),
 axis.ticks = element_blank(),
 legend.title = element_blank(),
 legend.position = "right")

[Back to Top]

Pie Chart
Pie chart, a classic way of showing the compositions is equivalent to the waffle chart in terms of the
information conveyed. But is a slightly tricky to implement in ggplot2 using the coord_polar().

library(ggplot2)
theme_set(theme_classic())

Source: Frequency table
df <- as.data.frame(table(mpg$class))
colnames(df) <- c("class", "freq")
pie <- ggplot(df, aes(x = "", y=freq, fill = factor(class))) +
 geom_bar(width = 1, stat = "identity") +
 theme(axis.line = element_blank(),

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

 plot.title = element_text(hjust=0.5)) +
 labs(fill="class",
 x=NULL,
 y=NULL,
 title="Pie Chart of class",
 caption="Source: mpg")

pie + coord_polar(theta = "y", start=0)

Source: Categorical variable.
mpg$class
pie <- ggplot(mpg, aes(x = "", fill = factor(class))) +
 geom_bar(width = 1) +
 theme(axis.line = element_blank(),
 plot.title = element_text(hjust=0.5)) +
 labs(fill="class",
 x=NULL,
 y=NULL,
 title="Pie Chart of class",
 caption="Source: mpg")

pie + coord_polar(theta = "y", start=0)

http://www.r-graph-gallery.com/128-ring-or-donut-plot/

[Back to Top]

Treemap

Treemap is a nice way of displaying hierarchical data by using nested rectangles. The treemapify
package provides the necessary functions to convert the data in desired format (treemapify) as well
as draw the actual plot (ggplotify).

In order to create a treemap, the data must be converted to desired format using treemapify(). The
important requirement is, your data must have one variable each that describes the area of the tiles,
variable for fill color, variable that has the tile’s label and finally the parent group.

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

Once the data formatting is done, just call ggplotify() on the treemapified data.

library(ggplot2)
library(treemapify)
proglangs <-
read.csv("https://raw.githubusercontent.com/selva86/datasets/master/proglanguages.c
sv")

plot
treeMapCoordinates <- treemapify(proglangs,
 area = "value",
 fill = "parent",
 label = "id",
 group = "parent")

treeMapPlot <- ggplotify(treeMapCoordinates) +
 scale_x_continuous(expand = c(0, 0)) +
 scale_y_continuous(expand = c(0, 0)) +
 scale_fill_brewer(palette = "Dark2")

print(treeMapPlot)

[Back to Top]

Bar Chart

By default, geom_bar() has the stat set to count. That means, when you provide just a
continuous X variable (and no Y variable), it tries to make a histogram out of the data.

In order to make a bar chart create bars instead of histogram, you need to do two things.

1. Set stat=identity
2. Provide both x and y inside aes() where, x is either character or factor and y is

numeric.

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

A bar chart can be drawn from a categorical column variable or from a separate frequency table. By
adjusting width, you can adjust the thickness of the bars. If your data source is a frequency table, that
is, if you don’t want ggplot to compute the counts, you need to set the stat=identity inside the
geom_bar().

prep frequency table
freqtable <- table(mpg$manufacturer)
df <- as.data.frame.table(freqtable)
head(df)
#> Var1 Freq
#> 1 audi 18
#> 2 chevrolet 19
#> 3 dodge 37
#> 4 ford 25
#> 5 honda 9
#> 6 hyundai 14

plot
library(ggplot2)
theme_set(theme_classic())

Plot
g <- ggplot(df, aes(Var1, Freq))
g + geom_bar(stat="identity", width = 0.5, fill="tomato2") +
 labs(title="Bar Chart",
 subtitle="Manufacturer of vehicles",
 caption="Source: Frequency of Manufacturers from 'mpg' dataset") +
 theme(axis.text.x = element_text(angle=65, vjust=0.6))

It can be computed directly from a column variable as well. In this case, only X is provided and
stat=identity is not set.

From on a categorical column variable
g <- ggplot(mpg, aes(manufacturer))
g + geom_bar(aes(fill=class), width = 0.5) +
 theme(axis.text.x = element_text(angle=65, vjust=0.6)) +
 labs(title="Categorywise Bar Chart",
 subtitle="Manufacturer of vehicles",
 caption="Source: Manufacturers from 'mpg' dataset")

[Back to Top]

6. Change

Time Series Plot From a Time Series Object (ts)

The ggfortify package allows autoplot to automatically plot directly from a time series object (ts).

From Timeseries object (ts)
library(ggplot2)
library(ggfortify)
theme_set(theme_classic())

Plot
autoplot(AirPassengers) +
 labs(title="AirPassengers") +
 theme(plot.title = element_text(hjust=0.5))

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

Time Series Plot From a Data Frame

Using geom_line(), a time series (or line chart) can be drawn from a data.frame as well. The X
axis breaks are generated by default. In below example, the breaks are formed once every 10 years.

Default X Axis Labels

library(ggplot2)
theme_set(theme_classic())

Allow Default X Axis Labels
ggplot(economics, aes(x=date)) +
 geom_line(aes(y=returns_perc)) +
 labs(title="Time Series Chart",
 subtitle="Returns Percentage from 'Economics' Dataset",
 caption="Source: Economics",
 y="Returns %")

Time Series Plot For a Monthly Time Series
If you want to set your own time intervals (breaks) in X axis, you need to set the breaks and labels
using scale_x_date().

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

economics_m <- economics[1:24,]

labels and breaks for X axis text
lbls <- paste0(month.abb[month(economics_m$date)], " ",
lubridate::year(economics_m$date))
brks <- economics_m$date

plot
ggplot(economics_m, aes(x=date)) +
 geom_line(aes(y=returns_perc)) +
 labs(title="Monthly Time Series",
 subtitle="Returns Percentage from Economics Dataset",
 caption="Source: Economics",
 y="Returns %") + # title and caption
 scale_x_date(labels = lbls,
 breaks = brks) + # change to monthly ticks and labels
 theme(axis.text.x = element_text(angle = 90, vjust=0.5), # rotate x axis text
 panel.grid.minor = element_blank()) # turn off minor grid

[Back to Top]

Time Series Plot For a Yearly Time Series
library(ggplot2)
library(lubridate)
theme_set(theme_bw())

economics_y <- economics[1:90,]

labels and breaks for X axis text
brks <- economics_y$date[seq(1, length(economics_y$date), 12)]
lbls <- lubridate::year(brks)

plot
ggplot(economics_y, aes(x=date)) +
 geom_line(aes(y=returns_perc)) +
 labs(title="Yearly Time Series",
 subtitle="Returns Percentage from Economics Dataset",
 caption="Source: Economics",
 y="Returns %") + # title and caption
 scale_x_date(labels = lbls,
 breaks = brks) + # change to monthly ticks and labels
 theme(axis.text.x = element_text(angle = 90, vjust=0.5), # rotate x axis text
 panel.grid.minor = element_blank()) # turn off minor grid

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

[Back to Top]

Time Series Plot From Long Data Format: Multiple Time Series in Same
Dataframe Column
In this example, I construct the ggplot from a long data format. That means, the column names and
respective values of all the columns are stacked in just 2 variables (variable and value
respectively). If you were to convert this data to wide format, it would look like the economics
dataset.

In below example, the geom_line is drawn for value column and the aes(col) is set to
variable. This way, with just one call to geom_line, multiple colored lines are drawn, one each
for each unique value in variable column. The scale_x_date() changes the X axis breaks and
labels, and scale_color_manual changes the color of the lines.

data(economics_long, package = "ggplot2")
head(economics_long)
#> date variable value value01
#> <date> <fctr> <dbl> <dbl>
#> 1 1967-07-01 pce 507.4 0.0000000000
#> 2 1967-08-01 pce 510.5 0.0002660008
#> 3 1967-09-01 pce 516.3 0.0007636797
#> 4 1967-10-01 pce 512.9 0.0004719369
#> 5 1967-11-01 pce 518.1 0.0009181318
#> 6 1967-12-01 pce 525.8 0.0015788435

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

df <- economics_long[economics_long$variable %in% c("psavert", "uempmed"),]
df <- df[lubridate::year(df$date) %in% c(1967:1981),]

labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date), 12)]
lbls <- lubridate::year(brks)

plot
ggplot(df, aes(x=date)) +
 geom_line(aes(y=value, col=variable)) +
 labs(title="Time Series of Returns Percentage",
 subtitle="Drawn from Long Data format",
 caption="Source: Economics",
 y="Returns %",
 color=NULL) + # title and caption
 scale_x_date(labels = lbls, breaks = brks) + # change to monthly ticks and
labels
 scale_color_manual(labels = c("psavert", "uempmed"),
 values = c("psavert"="#00ba38", "uempmed"="#f8766d")) + #
line color
 theme(axis.text.x = element_text(angle = 90, vjust=0.5, size = 8), # rotate x
axis text
 panel.grid.minor = element_blank()) # turn off minor grid

[Back to Top]

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

Time Series Plot From Wide Data Format: Data in Multiple Columns of Dataframe
As noted in the part 2 of this tutorial, whenever your plot’s geom (like points, lines, bars, etc) changes
the fill, size, col, shape or stroke based on another column, a legend is automatically drawn.

But if you are creating a time series (or even other types of plots) from a wide data format, you have to
draw each line manually by calling geom_line() once for every line. So, a legend will not be drawn
by default.

However, having a legend would still be nice. This can be done using the
scale_aesthetic_manual() format of functions (like, scale_color_manual() if only the
color of your lines change). Using this function, you can give a legend title with the name argument,
tell what color the legend should take with the values argument and also set the legend labels.

Even though the below plot looks exactly like the previous one, the approach to construct this is
different.

You might wonder why I used this function in previous example for long data format as well. Note that,
in previous example, it was used to change the color of the line only. Without
scale_color_manual(), you would still have got a legend, but the lines would be of a different
(default) color. But in current example, without scale_color_manual(), you wouldn’t even have
a legend. Try it out!

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

df <- economics[, c("date", "psavert", "uempmed")]
df <- df[lubridate::year(df$date) %in% c(1967:1981),]

labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date), 12)]
lbls <- lubridate::year(brks)

plot
ggplot(df, aes(x=date)) +
 geom_line(aes(y=psavert, col="psavert")) +
 geom_line(aes(y=uempmed, col="uempmed")) +
 labs(title="Time Series of Returns Percentage",
 subtitle="Drawn From Wide Data format",
 caption="Source: Economics", y="Returns %") + # title and caption
 scale_x_date(labels = lbls, breaks = brks) + # change to monthly ticks and
labels
 scale_color_manual(name="",
 values = c("psavert"="#00ba38", "uempmed"="#f8766d")) + #
line color
 theme(panel.grid.minor = element_blank()) # turn off minor grid

http://r-statistics.co/Complete-Ggplot2-Tutorial-Part2-Customizing-Theme-With-R-Code.html#2.%20Modifying%20Legend

[Back to Top]

Stacked Area Chart
Stacked area chart is just like a line chart, except that the region below the plot is all colored. This is
typically used when:

1. You want to describe how a quantity or volume (rather than something like price) changed over
time

2. You have many data points. For very few data points, consider plotting a bar chart.
3. You want to show the contribution from individual components.

This can be plotted using geom_area which works very much like geom_line. But there is an
important point to note. By default, each geom_area() starts from the bottom of Y axis (which is
typically 0), but, if you want to show the contribution from individual components, you want the
geom_area to be stacked over the top of previous component, rather than the floor of the plot itself.
So, you have to add all the bottom layers while setting the y of geom_area.

In below example, I have set it as y=psavert+uempmed for the topmost geom_area().

However nice the plot looks, the caveat is that, it can easily become complicated and uninterprettable if
there are too many components.

library(ggplot2)
library(lubridate)
theme_set(theme_bw())

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

df <- economics[, c("date", "psavert", "uempmed")]
df <- df[lubridate::year(df$date) %in% c(1967:1981),]

labels and breaks for X axis text
brks <- df$date[seq(1, length(df$date), 12)]
lbls <- lubridate::year(brks)

plot
ggplot(df, aes(x=date)) +
 geom_area(aes(y=psavert+uempmed, fill="psavert")) +
 geom_area(aes(y=uempmed, fill="uempmed")) +
 labs(title="Area Chart of Returns Percentage",
 subtitle="From Wide Data format",
 caption="Source: Economics",
 y="Returns %") + # title and caption
 scale_x_date(labels = lbls, breaks = brks) + # change to monthly ticks and
labels
 scale_fill_manual(name="",
 values = c("psavert"="#00ba38", "uempmed"="#f8766d")) + # line
color
 theme(panel.grid.minor = element_blank()) # turn off minor grid

[Back to Top]

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

Calendar Heatmap
When you want to see the variation, especially the highs and lows, of a metric like stock price, on an
actual calendar itself, the calendar heat map is a great tool. It emphasizes the variation visually over
time rather than the actual value itself.

This can be implemented using the geom_tile. But getting it in the right format has more to do with
the data preparation rather than the plotting itself.

http://margintale.blogspot.in/2012/04/ggplot2-time-series-heatmaps.html
library(ggplot2)
library(plyr)
library(scales)
library(zoo)

df <-
read.csv("https://raw.githubusercontent.com/selva86/datasets/master/yahoo.csv")
df$date <- as.Date(df$date) # format date
df <- df[df$year >= 2012,] # filter reqd years

Create Month Week
df$yearmonth <- as.yearmon(df$date)
df$yearmonthf <- factor(df$yearmonth)
df <- ddply(df,.(yearmonthf), transform, monthweek=1+week-min(week)) # compute
week number of month
df <- df[, c("year", "yearmonthf", "monthf", "week", "monthweek", "weekdayf",
"VIX.Close")]
head(df)
#> year yearmonthf monthf week monthweek weekdayf VIX.Close
#> 1 2012 Jan 2012 Jan 1 1 Tue 22.97
#> 2 2012 Jan 2012 Jan 1 1 Wed 22.22
#> 3 2012 Jan 2012 Jan 1 1 Thu 21.48
#> 4 2012 Jan 2012 Jan 1 1 Fri 20.63
#> 5 2012 Jan 2012 Jan 2 2 Mon 21.07
#> 6 2012 Jan 2012 Jan 2 2 Tue 20.69

Plot
ggplot(df, aes(monthweek, weekdayf, fill = VIX.Close)) +
 geom_tile(colour = "white") +
 facet_grid(year~monthf) +
 scale_fill_gradient(low="red", high="green") +
 labs(x="Week of Month",
 y="",
 title = "Time-Series Calendar Heatmap",
 subtitle="Yahoo Closing Price",
 fill="Close")

[Back to Top]

Slope Chart
Slope chart is a great tool of you want to visualize change in value and ranking between categories.
This is more suitable over a time series when there are very few time points.

library(dplyr)
theme_set(theme_classic())
source_df <- read.csv("https://raw.githubusercontent.com/jkeirstead/r-
slopegraph/master/cancer_survival_rates.csv")

Define functions. Source: https://github.com/jkeirstead/r-slopegraph
tufte_sort <- function(df, x="year", y="value", group="group", method="tufte",
min.space=0.05) {
 ## First rename the columns for consistency
 ids <- match(c(x, y, group), names(df))
 df <- df[,ids]
 names(df) <- c("x", "y", "group")

 ## Expand grid to ensure every combination has a defined value
 tmp <- expand.grid(x=unique(df$x), group=unique(df$group))
 tmp <- merge(df, tmp, all.y=TRUE)
 df <- mutate(tmp, y=ifelse(is.na(y), 0, y))

 ## Cast into a matrix shape and arrange by first column
 require(reshape2)
 tmp <- dcast(df, group ~ x, value.var="y")
 ord <- order(tmp[,2])
 tmp <- tmp[ord,]

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

 min.space <- min.space*diff(range(tmp[,-1]))
 yshift <- numeric(nrow(tmp))
 ## Start at "bottom" row
 ## Repeat for rest of the rows until you hit the top
 for (i in 2:nrow(tmp)) {
 ## Shift subsequent row up by equal space so gap between
 ## two entries is >= minimum
 mat <- as.matrix(tmp[(i-1):i, -1])
 d.min <- min(diff(mat))
 yshift[i] <- ifelse(d.min < min.space, min.space - d.min, 0)
 }

 tmp <- cbind(tmp, yshift=cumsum(yshift))

 scale <- 1
 tmp <- melt(tmp, id=c("group", "yshift"), variable.name="x", value.name="y")
 ## Store these gaps in a separate variable so that they can be scaled ypos =
a*yshift + y

 tmp <- transform(tmp, ypos=y + scale*yshift)
 return(tmp)

}

plot_slopegraph <- function(df) {
 ylabs <- subset(df, x==head(x,1))$group
 yvals <- subset(df, x==head(x,1))$ypos
 fontSize <- 3
 gg <- ggplot(df,aes(x=x,y=ypos)) +
 geom_line(aes(group=group),colour="grey80") +
 geom_point(colour="white",size=8) +
 geom_text(aes(label=y), size=fontSize, family="American Typewriter") +
 scale_y_continuous(name="", breaks=yvals, labels=ylabs)
 return(gg)
}

Prepare data
df <- tufte_sort(source_df,
 x="year",
 y="value",
 group="group",
 method="tufte",
 min.space=0.05)

df <- transform(df,
 x=factor(x, levels=c(5,10,15,20),
 labels=c("5 years","10 years","15 years","20 years")),
 y=round(y))

Plot
plot_slopegraph(df) + labs(title="Estimates of % survival rates") +
 theme(axis.title=element_blank(),
 axis.ticks = element_blank(),
 plot.title = element_text(hjust=0.5,
 family = "American
Typewriter",
 face="bold"),
 axis.text = element_text(family = "American
Typewriter",
 face="bold"))

[Back to Top]

Seasonal Plot

If you are working with a time series object of class ts or xts, you can view the seasonal fluctuations
through a seasonal plot drawn using forecast::ggseasonplot. Below is an example using the
native AirPassengers and nottem time series.

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

You can see the traffic increase in air passengers over the years along with the repetitive seasonal
patterns in traffic. Whereas Nottingham does not show an increase in overal temperatures over the
years, but they definitely follow a seasonal pattern.

library(ggplot2)
library(forecast)
theme_set(theme_classic())

Subset data
nottem_small <- window(nottem, start=c(1920, 1), end=c(1925, 12)) # subset a
smaller timewindow

Plot
ggseasonplot(AirPassengers) + labs(title="Seasonal plot: International Airline
Passengers")
ggseasonplot(nottem_small) + labs(title="Seasonal plot: Air temperatures at
Nottingham Castle")

[Back to Top]

7. Groups

Hierarchical Dendrogram
install.packages("ggdendro")
library(ggplot2)
library(ggdendro)
theme_set(theme_bw())

hc <- hclust(dist(USArrests), "ave") # hierarchical clustering

plot
ggdendrogram(hc, rotate = TRUE, size = 2)

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

[Back to Top]

Clusters

It is possible to show the distinct clusters or groups using geom_encircle(). If the dataset has
multiple weak features, you can compute the principal components and draw a scatterplot using PC1
and PC2 as X and Y axis.

The geom_encircle() can be used to encircle the desired groups. The only thing to note is the
data argument to geom_circle(). You need to provide a subsetted dataframe that contains only
the observations (rows) that belong to the group as the data argument.

devtools::install_github("hrbrmstr/ggalt")
library(ggplot2)

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

library(ggalt)
library(ggfortify)
theme_set(theme_classic())

Compute data with principal components ------------------
df <- iris[c(1, 2, 3, 4)]
pca_mod <- prcomp(df) # compute principal components

Data frame of principal components ----------------------
df_pc <- data.frame(pca_mod$x, Species=iris$Species) # dataframe of principal
components
df_pc_vir <- df_pc[df_pc$Species == "virginica",] # df for 'virginica'
df_pc_set <- df_pc[df_pc$Species == "setosa",] # df for 'setosa'
df_pc_ver <- df_pc[df_pc$Species == "versicolor",] # df for 'versicolor'

Plot --
ggplot(df_pc, aes(PC1, PC2, col=Species)) +
 geom_point(aes(shape=Species), size=2) + # draw points
 labs(title="Iris Clustering",
 subtitle="With principal components PC1 and PC2 as X and Y axis",
 caption="Source: Iris") +
 coord_cartesian(xlim = 1.2 * c(min(df_pc$PC1), max(df_pc$PC1)),
 ylim = 1.2 * c(min(df_pc$PC2), max(df_pc$PC2))) + # change axis
limits
 geom_encircle(data = df_pc_vir, aes(x=PC1, y=PC2)) + # draw circles
 geom_encircle(data = df_pc_set, aes(x=PC1, y=PC2)) +
 geom_encircle(data = df_pc_ver, aes(x=PC1, y=PC2))

[Back to Top]

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

8. Spatial
The ggmap package provides facilities to interact with the google maps api and get the coordinates
(latitude and longitude) of places you want to plot. The below example shows satellite, road and hybrid
maps of the city of Chennai, encircling some of the places. I used the geocode() function to get the
coordinates of these places and qmap() to get the maps. The type of map to fetch is determined by the
value you set to the maptype.

You can also zoom into the map by setting the zoom argument. The default is 10 (suitable for large
cities). Reduce this number (up to 3) if you want to zoom out. It can be zoomed in till 21, suitable for
buildings.

Better install the dev versions ----------
devtools::install_github("dkahle/ggmap")
devtools::install_github("hrbrmstr/ggalt")

load packages
library(ggplot2)
library(ggmap)
library(ggalt)

Get Chennai's Coordinates --------------------------------
chennai <- geocode("Chennai") # get longitude and latitude

Get the Map --
Google Satellite Map
chennai_ggl_sat_map <- qmap("chennai", zoom=12, source = "google",
maptype="satellite")

Google Road Map
chennai_ggl_road_map <- qmap("chennai", zoom=12, source = "google",
maptype="roadmap")

Google Hybrid Map
chennai_ggl_hybrid_map <- qmap("chennai", zoom=12, source = "google",
maptype="hybrid")

Open Street Map
chennai_osm_map <- qmap("chennai", zoom=12, source = "osm")

Get Coordinates for Chennai's Places ---------------------
chennai_places <- c("Kolathur",
 "Washermanpet",
 "Royapettah",
 "Adyar",
 "Guindy")

places_loc <- geocode(chennai_places) # get longitudes and latitudes

Plot Open Street Map -------------------------------------
chennai_osm_map + geom_point(aes(x=lon, y=lat),
 data = places_loc,
 alpha = 0.7,
 size = 7,
 color = "tomato") +
 geom_encircle(aes(x=lon, y=lat),
 data = places_loc, size = 2, color = "blue")

Plot Google Road Map -------------------------------------

chennai_ggl_road_map + geom_point(aes(x=lon, y=lat),
 data = places_loc,
 alpha = 0.7,
 size = 7,
 color = "tomato") +
 geom_encircle(aes(x=lon, y=lat),
 data = places_loc, size = 2, color = "blue")

Google Hybrid Map --
chennai_ggl_hybrid_map + geom_point(aes(x=lon, y=lat),
 data = places_loc,
 alpha = 0.7,
 size = 7,
 color = "tomato") +
 geom_encircle(aes(x=lon, y=lat),
 data = places_loc, size = 2, color =
"blue")

Open Street Map

[Back to Top]

Google Road Map

[Back to Top]

Google Hybrid Map

http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top
http://r-statistics.co/Top50-Ggplot2-Visualizations-MasterList-R-Code.html#top

	1. Correlation
	Scatterplot
	Scatterplot With Encircling
	Jitter Plot
	Counts Chart
	Bubble plot
	Animated Bubble chart
	Marginal Histogram / Boxplot
	Correlogram

	2. Deviation
	Diverging bars
	Diverging Lollipop Chart
	Diverging Dot Plot
	Area Chart

	3. Ranking
	Ordered Bar Chart
	Lollipop Chart
	Dot Plot
	Slope Chart
	Dumbbell Plot

	4. Distribution
	Histogram
	Histogram on a continuous variable
	Histogram on a categorical variable

	Density plot
	Box Plot
	Dot + Box Plot
	Tufte Boxplot
	Violin Plot
	Population Pyramid

	5. Composition
	Waffle Chart
	Pie Chart
	Treemap
	Bar Chart

	6. Change
	Time Series Plot From a Time Series Object (ts)
	Time Series Plot From a Data Frame
	Default X Axis Labels

	Time Series Plot For a Monthly Time Series
	Time Series Plot For a Yearly Time Series
	Time Series Plot From Long Data Format: Multiple Time Series in Same Dataframe Column
	Time Series Plot From Wide Data Format: Data in Multiple Columns of Dataframe
	Stacked Area Chart
	Calendar Heatmap
	Slope Chart
	Seasonal Plot

	7. Groups
	Hierarchical Dendrogram
	Clusters

	8. Spatial
	Open Street Map
	Google Road Map
	Google Hybrid Map

