IPS-1

Write an algorithm / pseudo-code, Flow Chart and subsequent Python program to compute the electricity charges for the consumer as per the following slabs.

Slab Rate

From Unit	To Unit	Rate (Rs.)	Max.Unit
1	100	0	100
1	100	0	200
101	200	1.5	200
1	100	0	500
101	200	2	500
201	500	3	500
1	100	0	9999999
101	200	3.5	9999999
201	500	4.6	9999999
501	Above	6.6	9999999

Input: First Line: Number of units consumed.
Output: Total amount to be paid.
For Example if the number units consumed is 550 , then bill amount is as follows
First 100 units amount to be paid $=100 \times 0.0=0.00$
next 100 units amount to be paid $=100$ X $3.5=350.00$
next 300 units amount to be paid $=300$ X $4.6=1380.00$
next 50 units amount to be paid $=50 \times 6.6=330.00$
Total amount to be paid for 550 units is $=\square$
tc-1(test case-1)
50
0
tc-2(test case-2)
175
112.50
tc-3(test case-3)
230
290.00
tc-4(test case-4)
550
2060.00
tc-5(test case-5)
-1
Invalid Input

Code:

```
num_units = float(input())
if(num_units<0):
    print("Invalid Input")
    exit(0)
else:
    if(num_units>=0 and num_units <=100):
        bill_amount = 0;
        print(format(bill_amount,'.2f'))
    elif(num_units>100 and num_units <=200):
        bill_amount \(=(\) num_units-100)*1.5;
        print(format(bill_amount,'.2f'))
    elif(num_units>200 and num_units <=500):
        bill_amount \(=(\) num_units-200)*3+100*2;
        print(format(bill_amount,'.2f'))
    else:
        bill_amount \(=(\) num_units-500)*6.6+100*3.5+300*4.6;
        print(format(bill_amount,'.2f'))
```


IPS-2

VIT Examination cell like to facilitate to their students to find out their category by supplying the number of subjects and marks obtained in those respective subjects. Write a python program and subsequent pseudocode/flowchart to determine the category of the student.
The category of student is decided with the following criteria.
CGPA = average marks/10;
The details criteria are as follows:
$<=9$ CGPA $<=10$ - outstanding
$<=8$ CGPA < 9 - excellent
$<=7$ CGPA < 8 - good
$<=6$ CGPA <7 - average
$<=5$ CGPA <6 - better
CGPA <5 - poor
For Ex : if number of subjects=3, marks = 100,90,80 category is outstanding.
Note: Marks should not be lessthan 0 and graeterthan 100
tc-1(test case-1)
3
90
100
80
Outstanding

tc-2(test case-2)

3
50
65
82
Average
tc-3(test case-3)
3
-1
Invalid Input
Code:
count $=0$
total $=0$
$n=\operatorname{int}($ input())
while (count $<n$):
mark $=\operatorname{int(input())}$
if(mark<0 or mark >100):
print("Invaild Input")
exit(0)
else:
total $=$ total + mark
count $=$ count +1
CGPA $=\operatorname{int}($ total/(n*10))
$i f(C G P A==9)$:
print("Outstanding")
elif((CGPA > = 8) and (CGPA < 9)):
print("Excellent")
elif((CGPA >= 7) and (CGPA < 8)):
print("Good")
elif($(C G P A>=6)$ and $(C G P A<7))$:
print("Average")
elif((CGPA > = 5) and (CGPA < 6)):
print("Need to Improve")
else:
print("Very Poor")

