Problem Solving and Programming CSE1001

Prof. Tulasi Prasad Sariki

September 10, 2019

Introduction to List

PROBLEM - 1

A farmer with a fox, a goose, and a sack of corn needs to cross a river. Now he is on the east side of the river and wants to go to west side. The farmer has a rowboat, but there is room for only the farmer and one of his three items. Unfortunately, both the fox and the goose are hungry. The fox cannot be left alone with the goose, or the fox will eat the goose. Likewise, the goose cannot be left alone with the sack of corn, or the goose will eat the corn. Given a sequence of moves find if all the three items fox, goose and corn are safe. The input sequence indicate the item carried by the farmer along with him in the boat. 'F' - Fox, 'C' - Corn, 'G' - Goose, N-Nothing. As he is now on the eastern side the first move is to west and direction alternates for each step.

Introduction to List

Pseudocode

```
READ items_ carried
SET east as G, C, F
SET west as empty
SET from_ Dir = east and to_Dir = west
FOR each item in items_ carried
IF from_ Dir == east THEN
    remove item from east and add to west
    IF east or west contains 'C' and 'G' or 'G' and 'F' THEN
        PRINT 'NOT SAFE'
        BREAK
    ELSE
        remove item from west and add to east
        IF east or west contains 'C' and 'G' or 'G' and 'F' THEN
            PRINT 'NOT SAFE'
            BREAK
    END IF
IF from_ Dir == east THEN
    SET from_ Dir = west
    SET to_ Dir = east
ELSE
    SET from_ Dir = east
    SET to_ Dir = west
END IF
END FOR
PRINT 'SAFE'
```


Introduction to List

Problem
 While going for a Shopping .!!!???

PRoblem

Imagine you have the scores in Python Programming for 100 students. If you want to find the average score in Python?

Simple Statistics

- Many programs deal with large collections of similar information.
- Words in a document
- Students in a course
- Data from an experiment
- Customers of a business
- Graphics objects drawn on the screen
- Cards in a deck

List

Examples

- Apple, Banana, Berry, Mango \rightarrow fruits family
- Football, Basketball, Throwball, Tennis, Hockey \rightarrow different kinds of balls
- Sunrise, Sugar, Cheese, Butter, Pickle, Soap, Washing Powder, Oil \rightarrow grocery
- Agra, Delhi, Kashmir, Jaipur, Kolkata \rightarrow places

Introduction

- Contains multiple values that are logically related
- List is a type of mutable sequence in Python
- Each element of a list is assigned a number - index / position
- Can do indexing, slicing, adding, multiplying, and checking for membership
- Built-in functions for finding length of a sequence and for finding its largest and smallest elements

What is a List?

- Most versatile data type in Python
- Comma-separated items can be collected in square brackets
- Good thing is..
- THE ITEMS IN THE LIST NEED NOT BE OF SAME TYPE

Creating a list

- Creating an EMPTY list
- listname = []
- Example:
- L1 = []
- MyList = []
- Books = []
- Creating a list with items listname $=$ [item1, item2, \ldots]
- Example:
- Temp $=[100,99.8,103,102]$
- $\mathrm{S}=$ ['15BIT001',' Achu', 99.9]
- $\mathrm{L} 2=[1,2,3,4,5,6,7]$
- Course $=\left[{ }^{\prime}\right.$ Python',' C' $^{\prime}$, ' $C++^{\prime}$, , Java' $]$

Accessing Values

- Using index or indices
- $\ggg L 1=[1,2,3,4,5,6]$
- $\ggg>\operatorname{print}(L 1[3]) \quad$ \# indexing
- $\ggg 4$
- $\ggg>\operatorname{print}(L 1[2: 5]) \quad$ \# slicing
- $\ggg[3,4,5]$

Updating Elements

- Update an element in list using index
- $\ggg L 1=[1,2,3,4,5,6]$
- $\ggg L 1[2]=111$
- $\ggg L 1$
- $\quad[1,2,111,4,5,6] \rightarrow$ Inserted a given element in specified position in List

Deleting Elements

- Delete an element in the list using Index:
- $\ggg \mathrm{L} 1=[1,2,3,4,5,6]$
- \ggg del L1[4]
- L1 \rightarrow check the output
- $\quad[1,2,3,4,6] \rightarrow$ deleted an element in specified position

Introduction to List

Basic Operations in List:

- $\ggg \operatorname{len}([1,2,3]) \rightarrow$ gives the length of the list
- $\ggg[1,2,3]+[4,5,6] \rightarrow$ Concatenation of two list
[1,2,3,4,5,6]
- \ggg ['VIT!'] * $4 \rightarrow$ Repetition of the elements in list
['VIT!', 'VIT!', 'VIT!', 'VIT!']
- >>> $\operatorname{str}([1,2])+$ "34" \rightarrow equals to " $[1,2] "+$ "34"
- \quad ' 1,2$] 34$ ' \rightarrow check the indices
- >>> [1,2] + list(" 34 ") \rightarrow same as [1,2]+["3","4"]
[1,2,'3','4']

List Iteration

- $\ggg 3$ in $[1,2,3] \rightarrow$ membership \rightarrow True
- \ggg for i in $[1,2,3]$:
print $(\mathrm{i}$, end $=$ ' ') \rightarrow check result

Introduction to List

List Comprehensions:

- \ggg res $=[]$
- \ggg for i in 'SPAM':
res.append(i*4)
- >>> res \rightarrow check output \rightarrow ['SSSS', 'PPPP', 'AAAA', 'MMMM']
- another way to achieve same result
- \ggg res $=[\mathrm{i} * 4$ for i in 'SPAM']
- >>> res \rightarrow check output \rightarrow ['SSSS', 'PPPP', 'AAAA', 'MMMM']
- expression is functionally equivalent to a for loop that builds up a list of results manually
- list comprehensions are simpler to code and likely faster to run.

Introduction to List

List Methods:

- list.append(item) \rightarrow adds a single item to the end of the list. \rightarrow It does not return the new list, just modifies the original.
- list.insert(index,item) \rightarrow it inserts the item at the given index, shifting elements to right.
- list.extend(list2) \rightarrow it adds the items in list2 to the end of the list. \rightarrow Equal to + between two lists.
- list.index(item) \rightarrow It searches for a given item form the start of the list and returns its index. \rightarrow It returns ValueError if item not found.
- list.remove(item) \rightarrow it searches for first occurrence of the given item and removes it. \rightarrow It returns ValueError if item not found.
- list.sort ()\rightarrow sort the list in place.
- list.reverse() \rightarrow it reverse the items in list in place.
- list.pop(index) \rightarrow it removes and returns the element at given index.
\rightarrow It returns the rightmost element if the index is omitted. \rightarrow It is opposite to append().

Introduction to List

Map

- Map is built-in function applies a function to items in a sequence and collects all the results in a new list.
- Example
- >>> list(map(abs,[-2,-1,0,1,2])) \rightarrow check output $\rightarrow[2,1,0,1,2] \rightarrow$ Map a function across a sequence.

Indexing and Slicing

- \ggg L $=$ ['spam', 'Spam', 'SPAM!']
- \ggg L[2] \rightarrow check output \rightarrow 'SPAM!' \rightarrow The offset starts at zero
- $\ggg \mathrm{L}[-2] \rightarrow$ check output \rightarrow 'Spam' \rightarrow Negative: count from the right
- \ggg L[1:] \rightarrow check output \rightarrow ['Spam', 'SPAM!'] \rightarrow Slicing fetches sections

Matrix

- two-dimensional list-based array
- Example:

$$
\text { - } \ggg \text { matrix }=[[1,2,3],[4,5,6],[7,8,9]]
$$

- With one index \rightarrow get an entire row
- With two index \rightarrow get an item within the row
- Examples:
- \ggg matrix[1] \rightarrow check result
- $\quad[4,5,6]$
- \ggg matrix $[1][1] \rightarrow$ check result
- 5
- \ggg matrix $[2][0] \rightarrow$ check result
- 7
- \ggg matrix $=[[1,2,3],[4,5,6],[7,8,9]]$
- \ggg matrix[1][1] \rightarrow check result $\rightarrow 5$

Introduction to List

Multiplication of Matrices

Write a python code to multiply the matrix multiplication for a given matrices

PYTHON CODE FOR MATRIX MULTIPLICATION

```
X = [[12,7,3],[4 ,5,6],[7 , 8,9]]
Y = [[5,8,1,2],[6,7,3,0],[4,5,9,1]]
    result = [[0,0,0,0],[0,0,0,0],[0,0,0,0]]
# iterate through rows of X
for i in range(Ien(X)):
    # iterate through columns of Y
        for j in range(Ien(Y[0])):
            # iterate through rows of Y
            for k in range(len(Y)):
\[
\text { result }[i][j]+=X[i][k] * Y[k][j]
\]
```

for r in result:
print (r)

Zip and Enumerate

- >>> list10 = ['a1', 'a2', 'a3']
- \ggg for i , a in enumerate(list10): print(i, a) \rightarrow check output
- >>> alist $=$ ['a1', 'a2', 'a3']
- >>> blist $=[$ 'b1', 'b2', 'b3']
- \ggg for a, b in zip(alist, blist): print(a, b) \rightarrow check output
- >>> alist = ['a1', 'a2', 'a3']
- >>> blist $=[$ 'b1', 'b2', 'b3']
- >>> for $\mathrm{i},(\mathrm{a}, \mathrm{b})$ in enumerate(zip(alist, blist)): print (i,a, b) \rightarrow check output

Introduction to List

Multiplication of Matrices

Write a python code to multiply the matrix multiplication for a given matrices using List comprehensions

Python code for matrix multiplication using List Comprehension

```
# Program to multiply two matrices using list comprehension
# 3x3 matrix
X = [[12,7,3],[4 ,5,6],[7 ,8,9]]
# 3x4 matrix
Y = [[5,8,1,2],[6,7,3,0],[4,5,9,1]]
# result is 3x4
result = [[sum(a*b for a,b in zip(X_row,Y_col))
for Y_col in zip(*Y)]
for X_row in X]
```

for r in result:
print (r)

Introduction to List

Insertion, Deletion and Replacement

- $\ggg \mathrm{L}=[1,2,3]$
- $\ggg \mathrm{L}[1: 2]=[4,5] \rightarrow$ Replacement/insertion
$\bullet \ggg \mathrm{L} \rightarrow$ check output $\rightarrow[1,4,5,3]$
- $\ggg \mathrm{L}[1: 1]=[6,7] \rightarrow$ Insertion only (replace nothing)
- $\ggg \mathrm{L} \rightarrow$ Check output $\rightarrow[1,6,7,4,5,3]$
- $\ggg \mathrm{L}[1: 2]=[] \rightarrow$ Deletion (insert nothing)
$\bullet \ggg \mathrm{L} \rightarrow$ check Output $\rightarrow[1,7,4,5,3]$
- $\ggg \mathrm{L}=[1]$
- $\mathrm{L}[: 0]=[2,3,4] \rightarrow$ Insert all at :0, an empty slice at front
- >>>L \rightarrow check output $\rightarrow[2,3,4,1]$
- >>> L[len(L):] $=[5,6,7] \rightarrow$ Insert all at len(L):, an empty slice at end
- >>> L \rightarrow check output $\rightarrow[2,3,4,1,5,6,7]$

List method calls

- $\ggg \mathrm{L}=$ ['eat','more','SPAM!']
- \ggg L.append('please') \rightarrow Append method call: add item at end
- $\ggg \mathrm{L}$
- ['eat' ${ }^{\prime}$ ' more' ${ }^{\prime}$, SPAM!' ${ }^{\prime}$, please']
- \ggg L.sort() \rightarrow \# Sort list items ('S' < 'e')
- $\ggg L$
- ['SPAM!', ' eat' ${ }^{\prime}$, more' ${ }^{\prime}$,' please']
- $\ggg \mathrm{L}=$ ['abc', 'ABD', 'aBe']
- \ggg L.sort() \rightarrow \# Sort with mixed case
- $\ggg L$
- ['ABD', $\left.{ }^{\prime} a B e^{\prime},{ }^{\prime} a b c^{\prime}\right]$
- $\ggg \mathrm{L}=$ ['abc', 'ABD', 'aBe']
- >>> L.sort(key=str.lower) \rightarrow \# Normalize to lowercase
- $\ggg \mathrm{L}$
- ['abc', $\left.{ }^{\prime} A B D^{\prime},{ }^{\prime} a B e^{\prime}\right]$
- \ggg L.sort(key=str.lower, reverse=True) \rightarrow \# Change sort order
- $\ggg \mathrm{L}$
- ['aBe', $\left.{ }^{\prime} A B D^{\prime},{ }^{\prime} a b c^{\prime}\right]$

Introduction to List

Other common list methods

- $\ggg \mathrm{L}=[1,2]$
- \ggg L.extend([3, 4, 5]) \# Add many items at end (like in-place +)
- \ggg L
- $[1,2,3,4,5]$
- \ggg L.pop() \rightarrow \# Delete and return last item 5
- >>>L $[1,2,3,4]$
- >>> L.reverse() \rightarrow \# In-place reversal method
- $\ggg \mathrm{L}[4,3,2,1]$
- \ggg list(reversed $(\mathrm{L})) \rightarrow$ \# Reversal built-in with a result (iterator)
- [1, 2, 3, 4]

Introduction to List

Other common list methods

- \ggg L $=$ ['spam', 'eggs', 'ham']
- \ggg L.index('eggs') \rightarrow \# Index of an object (search/find)
- 1
- \ggg L.insert(1, 'toast') \rightarrow \# Insert at position
- \ggg L
- ['spam',' toast', ' eggs',' ham']
- \ggg L.remove('eggs') \rightarrow \# Delete by value
- \ggg L
- ['spam',' toast',' ham']
- \ggg L.pop(1) \rightarrow \# Delete by position 'toast'
- \ggg L
- ['spam', ${ }^{\prime}$ ham']
- >>> L.count('spam') \rightarrow \# Number of occurrences 1
- 1

Introduction to List

Other common list methods

- \ggg L $=$ ['spam', 'eggs', 'ham', 'toast']
- \ggg del L[0] \rightarrow \# Delete one item
- >>> L ['eggs', 'ham', 'toast']
- \ggg del L[1:] \rightarrow \# Delete an entire section
- $\ggg \mathrm{L} \rightarrow \#$ Same as L[1:] = []
- ['eggs']
- \ggg L $=$ ['Already', 'got', 'one']
- $\ggg \mathrm{L}[1:]=[]$
- \ggg L
- ['Already']
- $\ggg \mathrm{L}[0]=[]$
- $\ggg>$ L
- []]

Introduction to List

Hence...

- A list is a sequence of items stored as a single object.
- Items in a list can be accessed by indexing, and sub lists can be accessed by slicing.
- Lists are mutable; individual items or entire slices can be replaced through assignment statements.
- Lists support a number of convenient and frequently used methods.
- Lists will grow and shrink as needed.

Introduction to List

Strings and Lists

- $\ggg S=$ 'spammy'
- $\ggg \mathrm{L}=\operatorname{list}(\mathrm{S})$
- $\ggg L$
- $\left[{ }^{\prime} s^{\prime},{ }^{\prime} p^{\prime},{ }^{\prime} a^{\prime},{ }^{\prime} m^{\prime},{ }^{\prime} m^{\prime},{ }^{\prime} y^{\prime}\right]$
- $\ggg \mathrm{L}[3]=$ ' x ' \rightarrow \# Works for lists, not strings
- $\ggg L[4]=$ ' x '
- $\ggg L$
- ['s', $\left.{ }^{\prime} p^{\prime},{ }^{\prime} a^{\prime},{ }^{\prime} x^{\prime},{ }^{\prime} x^{\prime},{ }^{\prime} y^{\prime}\right]$
- $\ggg S={ }^{\text {" }}$.join $(\mathrm{L}) \rightarrow$ \#uses for joining elements of list
- \ggg S
- 'spaxxy'
- >>> 'SPAM'.join(['eggs', 'sausage', 'ham', 'toast'])
- 'eggsSPAMsausageSPAMhamSPAMtoast' \rightarrow \# uses SPAM for joining elements of list
- \ggg line $=$ 'aaa bbb ccc'
- \ggg cols $=$ line.split()
- \ggg cols
- ['aaa',' bbb',' $c c c^{\prime}$]

Statistics using List

STATISTICS

Find the mean, standard deviation and median of a set of numbers

Introduction to List

Common List Literal and Operations

Operation	Interpretation
L[]	An empty list
$\mathrm{L}\left[123, ' a b c^{\prime}, 12.3,\{ \}\right]$	Four Items index 0..3
$\mathrm{L}[$ 'Bob',14.0, ['Dev','mgr']]	Nested sublists
$\mathrm{L}=$ list('spam')	List of an iterable's items, list of successive integers
$\mathrm{L}=$ list(range(-4,4))	
$\mathrm{L}[\mathrm{i}]$	index, index of index, slice, length
$\mathrm{L}[\mathrm{i}][\mathrm{j}]$	
$\mathrm{L}[\mathrm{i}: \mathrm{j}]$	
len(L)	
$\mathrm{L} 1+\mathrm{L} 2$	Concatenate, Repeat
L * 3	
for x in $\mathrm{L}:$ print (x)	Iteration, membership
3 in L	
L.append(4)	Methods, growing
L.extend([5,6,7])	

Operation	Interpretation
L.extend([5,6,7])	
L.insert(i,x)	
L.index(x)	Methods:Searching
L.count()	
L.sort()	Methods:Sorting,reversing
L.reverse()	copying(3,3+),clearing(3,3+)
L.copy()	
L.clear()	Methods, Statements:shrinking
L.pop(i)	
del L[i]	
del L[i:j]	
L[i:j] $=[]$	Index assignment, slice assignment
L[i $=3$	
L[i:j] $=[4,5,6]$	List Comprehension and Maps
L $=\left[x^{* *} 2\right.$ for x in range(5) $]$	
list(map(ord,'spam'))	

Introduction to List

ExERCISE - 1

Given a positions of coins of player1 and player2 in a 3X3 Tic Tac Toc board, write a program to determine if the board position is a solution and if so identify the winner of the game. In a Tic Tac Toc problem, if the coins in a row or column or along a diagonal is of the same player then he has won the game. Assume that player1 uses 1 as his coin and player2 uses ' 2 ' as his coin. ' 0 ' in the board represent empty cell.

ExERCISE - 2

In a supermarket there are two sections S1 and S2. The sales details of item1 to itemn of section 1 and item1 to itemp of section2 are maintained in a sorted order. Write a program to merge the elements of the two sorted lists to form the consolidated list.

Introduction to List

ExERCISE - 3

Watson gives Sherlock an list of N numbers. Then he asks him to determine if there exists an element in the list such that the sum of the elements on its left is equal to the sum of the elements on its right. If there are no elements to the left/right, then the sum is considered to be zero.

Exercise - 4

Sunny and Johnny together have M dollars they want to spend on ice cream. The parlor offers N flavors, and they want to choose two flavors so that they end up spending the whole amount.
You are given the cost of these flavors. The cost of the ith flavor is denoted by ci. You have to display the indices of the two flavors whose sum is M .

Introduction to List

ExERCISE - 5

Given a list of integer values, find the fraction of count of positive numbers, negative numbers and zeroes to the total numbers. Print the value of the fractions correct to 3 decimal places.

ExERCISE - 6

Given N integers, count the number of pairs of integers whose difference is K.

Introduction to List

Python code for matrix Addition

```
import sys
# Get dimension of first matrix
number_Of_Row1 = int(input())
number_Of_Col1 = int(input())
# Get dimension of second matrix
number_Of_Row2 = int(input())
number_Of_Col2 = int(input())
if number_Of_Row1 != number_Of_Row2 or number_Of_Col1 != number_Of_Col2:
    print('Addition_not_possible')
    sys.exit()
matrix1 = []
matrix2 = []
#Read first matrix
for counter1 in range (0,number_Of_Row1):
    #insert a list for a row in the matrix
    matrix1.append([])
    for counter2 in range (0, number_Of_Col1):
        matrix1[counter1].append(int(input()))
#Read second matrix
for counter1 in range (0,number_Of_Row2):
    #insert a list for a row in the matrix
    matrix2.append([])
    for counter2 in range (0, number_Of_Col2):
        matrix2[counter1].append(int(input()))
```

```
PyTHON CODE FOR MATRIX ADDITION(CONT..)
#Add matrices and form third matrix
matrix3 = []
for counter1 in range (0,number_Of_Row2):
    #insert a list for a row in the matrix
    matrix3.append ([])
    for counter2 in range (0, number_Of_Col2):
        matrix3[counter1].append(matrix1 [counter1][counter2]+\
        matrix2[counter1][counter2])
for counter1 in range (0,number_Of_Row2):
    for counter2 in range (0, number_Of_Col2):
        print(matrix3[counter1][counter2], end = '_')
    print()
```


Introduction to List

Python code for Merging Lists

```
count1 = int(input())
count2 = int(input())
list1 = []
list2 = []
#Get the elements in list1
for counter in range (0,count1):
    list1.append(int(input()))
#Get the elements in list2
for counter in range (0,count2):
    list2.append(int(input()))
consolidated_List = []
#initialize two pointers to first element in list
pointer1 = 0
pointer2 = 0
list3 =[]
#add elements into the resultant list till both the pointers point to a
# valid position in list
while pointer1< count1 and pointer2 < count2:
                            if (list1[pointer1]<=|ist2[pointer2]):
                        list3.append(list1 [pointer1])
                            pointer1+=1
    else:
        list3 . append(list2 [pointer1])
        pointer2+=1
```


Introduction to List

```
Python code for Merging Lists (cont..)
#when elements from one list is added and elements are remaining in the
# Other list
#Elements are remaining in list1
while pointer1 < count1:
    list3.append(list1 [pointer1])
    pointer1+=1
#Elements are remaining in list2
while pointer2 < count2:
    list3.append(list2[pointer2])
    pointer2+=1
for element in list3:
    print(element)
```


Introduction to List

Python code for Tic Tac Toe Problem

```
#Get input for board position
board = []
winner = 0
for row in range(0,3):
    #create a list to represent a row
    board.append ([])
    for col in range(0,3):
        #enter '0' if the position is empty, '1' if it contains
        #the coin of player1 and '2' if it contains coin of player2
        board [row].append(int(input ()))
#scan row by row to check if the coins in the row are of same player
for row1 in range(0,3):
    if (board[row1][0]==1 and board[row1][1]==1 and board[row1][2]==1):
        winner = 1
    elif (board[row1][0]==2 and board[row1][1]==2 and board[row1][2]==2):
        winner = 2
#scan column by column to check if the coins in the column are of same player
for coll in range(0,3):
    if (board[0][col1]==1 and board[1][col1]==1 and board[2][col1]==1):
        winner = 1
    elif (board[0][col1]==2 and board[1][col1]==2 and board[2][col1]==2):
        winner = 2
```


Introduction to List

Python code for Tic Tac Toe Problem(cont..)

```
#scan diagonal1 to check if the coins in the column are of same player
for col1 in range(0,3):
    if (board[0][0]==1 and board[1][1]==1 and board[2][2]==1):
        winner = 1
    elif (board[0][0]==2 and board[1][1]==2 and board[2][2]==2):
        winner = 2
#scan diagonal2 to check if the coins in the column are of same player
for coll in range(0,3):
    if (board[0][2]==1 and board[1][1]==1 and board[2][0]==1):
        winner = 1
    elif (board[0][2]==2 and board[1][1]==2 and board[2][0]==2):
        winner = 2
print(winner)
for row1 in range (0,3):
    for coll in range(0,3):
        print(board[row1][col1])','
```


Introduction to List

ExERCISE - 7

- Develop a security system that works with the caeser cipher.
- Let the given string be "Python" and the key is 3 letters away from each letter of the alphabet
- So "python" becomes "sbwkrq"
- $P \rightarrow S$
- $Y \rightarrow b$
- T \rightarrow w
- $\mathrm{H} \rightarrow \mathrm{k}$
- $\mathrm{O} \rightarrow \mathrm{r}$
- $N \rightarrow q$

Introduction to List

ExERCISE - 8

- Develop another security system that works with a key "five jugs"
- Let the given string be "Python" and the key is "five jugs"
- Abcdefghijklmnopqrstuvwxyz
- Fivejugsabcdhklmnopqrtwxyz
- So as per the mapping above, "python" becomes "mypalk"
- $\mathrm{P} \rightarrow \mathrm{m}$
- $Y \rightarrow y$
- $T \rightarrow p$
- $\mathrm{H} \rightarrow \mathrm{a}$
- $\mathrm{O} \rightarrow \mathrm{l}$
- $\mathrm{N} \rightarrow \mathrm{k}$

Introduction to List

ExERCISE - 9

- A scientific report is been generated in US English and it has to be converted to Indian English. Some words have to be changed as per the given format
- Color \rightarrow colour
- In some words the letter "z" have to be replaced with "s" like synchronize to synchronise
- Read the document and convert it to Indian English

Introduction to List

ExERCISE - 10

Given time in AM/PM format. Convert this into a 24 hour format. Note: Midnight is 12:00:00 AM or 00:00:00 and 12 Noon is 12:00:00.

ExERCISE - 11

Suppose you have a string S which has length N and is indexed from 0 to N 1 . String R is the reverse of the string S . The string S is funny if the condition $\left|S_{i}-S_{i-1}\right|=\left|R_{i}-R_{i-1}\right|$ is true for every i from 1 to $\mathrm{N}-1$. Write a program to check if a given string is funny.

