
CSE1007
Java Programming

Prof. Tulasi Prasad Sariki
SCSE, VIT, Chennai

www.learnersdesk.weebly.com

Slot: B1+TB1 Venue: AB1-810
Module -I Java Basics

http://www.learnersdesk.weebly.com/

Prof. Tulasi Prasad Sariki
2

Course Contents:

● Java Technology
– Programming Language
– Platform

● Features of Java Language
● Java source file structure
● Basic programming constructs
● Arrays

– One dimensional and Multidimensional
● Enhanced for loop
● String, StringBuffer & StringBuilder
● Wrapper classes

Prof. Tulasi Prasad Sariki
3

What is Java?

● Java technology is both a programming language and a
platform.

● Java is a high-level programming language that can be
characterized by its special features.

● Java is an object-oriented, cross platform, multipurpose
programming language produced by Sun Microsystems,
later acquired by Oracle Corporation.

Prof. Tulasi Prasad Sariki
4

Java Programming Language

● In the Java , all the source code is first written in plain
text files ending with the .java extension.

● Those source files are then compiled into .class files by
the javac compiler.

● A .class file does not contain code that is native to your
processor; it instead contains bytecodes— the machine
language of the Java Virtual Machine(Java VM).

● The java interpreter tool then runs your application
with an instance of the Java Virtual Machine.

https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine

Prof. Tulasi Prasad Sariki
5

Overview of the S/W development process

Prof. Tulasi Prasad Sariki
6

Overview of the S/W development process

● Java VM is available on many different operating
systems, the same .class files are capable of running
on Microsoft Windows, the Solaris™ Operating System
(Solaris OS), Linux, or Mac OS.

● Some virtual machines, such as the Java SE HotSpot ,
perform additional steps at run-time to give your
application a performance boost. This includes
various tasks such as finding performance bottlenecks
and recompiling (to native code) frequently used
sections of code.

Prof. Tulasi Prasad Sariki
7

Overview of the S/W development process

Prof. Tulasi Prasad Sariki
8

Overview of the S/W development process

The JIT compiler translates the Java bytecode into native processor instructions at run-
time and caches the native code in memory during execution.

Prof. Tulasi Prasad Sariki
9

The Java Platform

● A platform is the hardware or software environment
in which a program runs (Microsoft Windows, Linux,
Solaris OS, and Mac OS).

● Most platforms can be described as a combination of
the operating system and underlying hardware.

● The Java platform differs from most other platforms
in that it's a software-only platform that runs on top
of other hardware-based platforms.

Prof. Tulasi Prasad Sariki
10

The Java Platform

● The Java platform has two components:
– The Java Virtual Machine
– The Java Application Programming Interface (API)

● JVM is the base for the Java platform and is ported
onto various hardware-based platforms.

● The API is a large collection of ready-made software
components that provide many useful capabilities. It
is grouped into libraries of related classes and
interfaces; these libraries are known as packages.

https://dzone.com/articles/jvm-architecture-explained

Prof. Tulasi Prasad Sariki
11

The Java Platform

● The API and Java Virtual Machine insulate the program from
the underlying hardware.

● As a platform-independent environment, the Java platform
can be a bit slower than native code.

● However, advances in compiler and virtual machine
technologies are bringing performance close to that of native
code without threatening portability.

Prof. Tulasi Prasad Sariki
12

Features of Java
https://web.cs.wpi.edu/~kal/elecdoc/java/features.html

https://web.cs.wpi.edu/~kal/elecdoc/java/features.html

Prof. Tulasi Prasad Sariki
13

Features of Java

● Java is an object-oriented programming language. Everything in Java is an
object. Object-oriented means we organize our software as a combination
of different types of objects that incorporates both data and behavior.

● Object-oriented programming (OOPs) is a methodology that simplifies
software development and maintenance by providing some rules.

● Basic concepts of OOPs are:
– Object
– Class
– Inheritance
– Polymorphism
– Abstraction
– Encapsulation

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/inheritance-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java
https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/encapsulation

Prof. Tulasi Prasad Sariki
14

Features of Java

● Simple
– Java is very easy to learn, and its syntax is simple, clean and

easy to understand.
– Java syntax is based on C++ (so easier for programmers to

learn it after C++).
– Java has removed many complicated and rarely-used

features, for example, explicit pointers, operator overloading,
etc.

– There is no need to remove unreferenced objects because
there is an Automatic Garbage Collection in Java.

Prof. Tulasi Prasad Sariki
15

Features of Java

● Secured
– Java is best known for its security. With Java, we can

develop virus-free systems. Java is secured because:
● Java Programs run inside a virtual machine sandbox
● No explicit pointer

Prof. Tulasi Prasad Sariki
16

Features of Java

● Java is platform independent because it is different from other
languages like C, C++, etc. which are compiled into platform specific
machines while Java is a write once, run anywhere language (WORA).

● The Java platform differs from most other platforms in the sense that
it is a software-based platform that runs on the top of other
hardware-based platforms. It has two components:

– Runtime Environment
– API(Application Programming Interface)

● Java code is compiled by the compiler and converted into bytecode.
This bytecode is a platform-independent code because it can be run
on multiple platforms.

Prof. Tulasi Prasad Sariki
17

Features of Java

● Platform Independent

Prof. Tulasi Prasad Sariki
18

Features of Java

● Architecture-neutral
– Java is architecture neutral because there are no implementation dependent

features, for example, the size of primitive types is fixed.
– In C programming, int data type occupies 2 bytes of memory for 32-bit architecture

and 4 bytes of memory for 64-bit architecture. However, it occupies 4 bytes of
memory for both 32 and 64-bit architectures in Java.

● Robust simply means strong, Java is robust because:
– It uses strong memory management.
– There is a lack of pointers that avoids security problems.
– There is automatic garbage collection in java which runs on the Java Virtual Machine

to get rid of objects which are not being used by a Java application anymore.
– There are exception handling and the type checking mechanism in Java. All these

points make Java robust.

Prof. Tulasi Prasad Sariki
19

Features of Java

● Distributed
– Java is distributed because it facilitates users to create distributed applications in

Java. RMI and EJB are used for creating distributed applications. This feature of
Java makes us able to access files by calling the methods from any machine on
the internet.

● Portable
– Java is portable because it facilitates you to carry the Java bytecode to any

platform. It doesn't require any implementation.
● High-performance

– Java is faster than other traditional interpreted programming languages because
Java bytecode is "close" to native code. It is still a little bit slower than a
compiled language (e.g., C++). Java is an interpreted language that is why it is
slower than compiled languages, e.g., C, C++, etc.

https://stackoverflow.com/questions/2163411/is-java-really-slow

Prof. Tulasi Prasad Sariki
20

Features of Java

● Interpreted
– To run a Java program, we use the Java interpreter to execute the compiled byte-codes.
– rapid turn-around development
– Software author is protected, since binary byte streams are downloaded and not the source code

● Multi-threaded
– A thread is like a separate program, executing concurrently. We can write Java programs that

deal with many tasks at once by defining multiple threads. The main advantage of multi-
threading is that it doesn't occupy memory for each thread. It shares a common memory area.
Threads are important for multi-media, Web applications, etc.

● Dynamic
– Java is a dynamic language. It supports dynamic loading of classes. It means classes are loaded

on demand. It also supports functions from its native languages, i.e., C and C++.
– Java supports dynamic compilation and automatic memory management (garbage collection).

Prof. Tulasi Prasad Sariki
21

Java Source File Structure

Prof. Tulasi Prasad Sariki
22

Java Source File Structure

Prof. Tulasi Prasad Sariki
23

Java Source File Structure

● A java program can contain any no of classes, but atmost one class can be declared as
public.

● If there is a public class then name of the class and the program name must be
matched ,else CE will raise. If there is no public class, then we can use any name for the
java program and there are no restrictions.

1)We can compile a java program but not java class (can execute).

2).class file generation is not based on name of program, whenever we are compling a
java program for every class present in program a seperate .class file will be generated.

3)whenever we are executing a java class, the corresponding main method will be
executed.

4)If .class doesnt contain main method then we will get runtime exception saying
"NoSuchMethodError : main"

5)Whenever we are executing a java class,if .class is not available then we will get RE:
"NoClassDefFoundError : name "

Prof. Tulasi Prasad Sariki
24

Basic programming constructs

● The obvious reason that object-oriented programming
languages use objects is due to the power that design
principles such as inheritance, information hiding and
polymorphism provide the programmer.

● Even though languages may be object-oriented, most also
still use the basic constructs of programming and
algorithms developed in earlier programming languages.
Java is no exception.

Prof. Tulasi Prasad Sariki
25

Basic programming constructs

● Programs are computer code that provide sequences of
instructions - they can be large or small.

● Algorithms are the "recipes" ... the sequence of steps used
to achieve the desired goal.

● All algorithms are made up of the following control
constructs, which direct the flow of the program:
– sequences (assignment statements, IO calls)
– repetitions/loops (while, for, do)
– decisions/selections (if/then, switch)
– method invocation

Prof. Tulasi Prasad Sariki
26

Basic Data Types

● Types
– boolean either true or false
– char 16 bit Unicode 1.1
– byte 8-bit integer (signed)
– short 16-bit integer (signed)
– int 32-bit integer (signed)
– long 64-bit integer (singed)
– float 32-bit floating point (IEEE 754-1985)
– double 64-bit floating point (IEEE 754-1985)

● String (class for manipulating strings)
● Java uses Unicode to represent characters internally(Link)

http://unicode.org/main.html

Prof. Tulasi Prasad Sariki
27

Variables

● Local Variables are declared within the block of code
● Variable has a type preceding the name
● Initial value is set by initialization expressions

– type variableName = initialValue;
– e.g. int x = 1;

● Variables can be defined just before their usage (unlike C)
– e.g., for(int i = 0; i < 10; i+ +)

Prof. Tulasi Prasad Sariki
28

Constants

● Constants are similar to variables except that they
hold a fixed value. They are also called “READ” only
variables.

● Constants are declared with the reserved word “final”.
– final int MAX_MARK = 100;
– final double PI = 3.1428;

● By convention upper case letters are used for defining
constants.

Prof. Tulasi Prasad Sariki
29

Declaring Constants - example

class CircleArea

{

public static void main(String args[])

{

final double PI = 3.1428;

double radius = 5.5; / / in cms

double area;

area = PI * radius * radius;

System.out.println("Circle Radius = "+ radius+ " Area= "+ area);

}

}

Prof. Tulasi Prasad Sariki
30

Comments

● English text scattered through the code are comments
● JAVA supports 3 types of comments

/ * * / - Usually used from multi-line comments

//- Used for single line comments

/ * * * / - Documentation comments

Prof. Tulasi Prasad Sariki
31

Javadoc

● Effort to make Java self-documenting
● True OOP style, encapsulate documentation within

code.
● Comments beginning with / * * and ending with * / can

be extracted and turned into html documentation.
● Additional formatting using javadoc tags

– @author, @see, @version, @param, @exception

Prof. Tulasi Prasad Sariki
32

Control Flow

● Control Flow Statements in JAVA
– while loop
– for loop
– do-while loop
– if-else statement
– switch statement

● JAVA does not support a goto statement

Prof. Tulasi Prasad Sariki
33

Control Flow - Examples

while (squared <= MAX)

{

squared = lo * lo; // Calculate square

System.out.println(squared);

lo = lo + 1; /* Compute the new lo value */

}

Prof. Tulasi Prasad Sariki
34

Control Flow - Examples

for (int i = 1; i < MAX; i++)

{

System.out.println(i); // prints 1 2 3 4 5 ...

}

Prof. Tulasi Prasad Sariki
35

Control Flow - Examples

do

{

squared = lo * lo; // Calculate square

System.out.println(squared);

lo = lo + 1; /* Compute the new lo value */

} while (squared <= MAX);

Prof. Tulasi Prasad Sariki
36

Control Flow - Examples

if (i < 10)

{

System.out.println(“i is less than 10”);

}

else

{

System.out.println(“i is greater than or equal to 10”);

}

Prof. Tulasi Prasad Sariki
37

Control Flow - Examples

switch (c)

{

case ‘a’:

System.out.println (“ The character is ‘a’”);

break;

case ‘b’;\:

System.out.println (“ The character is ‘b’”);

break;

default:

System.out.println (“ The character is not ‘a’ or ‘b’”);

break;

}

Prof. Tulasi Prasad Sariki
38

Arrays

● Why exactly we need Java Array:
– Arrays are an important structure to hold data.
– Java allows us to hold many objects of the same type

using arrays.
– It can be used with the help of a loop to access the

elements by their index.

Prof. Tulasi Prasad Sariki
39

Arrays

● Arrays in Java are homogeneous data structures
implemented in Java as objects.

● Arrays store one or more values of a specific data type and
provide indexed access to store the same.

● A specific element in an array is accessed by its index.
● Arrays offer a convenient means of grouping related

information.

Prof. Tulasi Prasad Sariki
40

Arrays

● We can declare arrays in different ways.
– type <var-name> []
– Example:- int month_days[];
– type <var-name> = new type[size]

Prof. Tulasi Prasad Sariki
41

Arrays

Prof. Tulasi Prasad Sariki
42

Arrays

● Multidimensional Array
– Multidimensional arrays are arrays of arrays.
– To declare it, we have to specify each additional index using

another set of square brackets.
– Example int mul [][] = new int [4][5];

Prof. Tulasi Prasad Sariki
43

Arrays

Prof. Tulasi Prasad Sariki
44

Enhanced For-Loop

● The enhanced for-loop is a popular feature introduced
with the Java SE platform in version 5.0.

● Its simple structure allows one to simplify code by
presenting for-loops that visit each element of an
array/collection without explicitly expressing how one
goes from element to element.

● Because the old style of coding didn't become invalid with
the new for-loop syntax, you don't have to use an
enhanced for-loop when visiting each element of an array/
collection.

Prof. Tulasi Prasad Sariki
45

Enhanced For-Loop

for (int i=0; i < array.length; i++)

{

 System.out.println("Element: " + array[i]);

}

for (String element : array)

{

 System.out.println("Element: " + element);

}

Enhanced Vs Normal

https://javarevisited.blogspot.com/2017/01/difference-between-for-loop-and-enhanced-forlop-in-java.html

Prof. Tulasi Prasad Sariki
46

Enhanced vs Normal

public class ForLoopDemo
{
 public static void main(String[] args)
 {
 int array[] = new int [] {1,2,3,4,5,6,7,8,9,10};
 long start = System.nanoTime();
 for (int i=0; i < array.length; i++) { System.out.print("Element: " + array[i]+"\t");}
 long end = System.nanoTime();;
 System.out.println("Counting takes " + (end - start)/1000 + " micro seconds");
 start = System.nanoTime();
 for (int element : array){ System.out.print("Element: " + element+"\t");}
 end = System.nanoTime();;
 System.out.println("Counting takes " + (end - start)/1000 + " micro seconds");
 }
}

Prof. Tulasi Prasad Sariki
47

String

● String is a sequence of characters, for e.g. “Hello”
is a string of 5 characters.

● In java, string is an immutable object which means
it is constant and cannot be changed once it has
been created.

● Creating a String
– String literal
– Using new keyword

Prof. Tulasi Prasad Sariki
48

String

● String literal
– String str1 = "Welcome";
– String str2 = "Welcome";

● String is an object in Java. However we have not
created any string object using new keyword above.

● The compiler does that task for us it creates a string
object having the string literal and assigns it to the
provided string instances.

Prof. Tulasi Prasad Sariki
49

String

● But if the object already exist in the memory it does
not create a new Object rather it assigns the same old
object to the new instance, that means even though
we have two string instances above(str1 and str2)
compiler only created one string object (having the
value “Welcome”) and assigned the same to both the
instances. Example

● if we want to have two different object with the same
string? For that we would need to create strings using
new keyword.

file:///run/media/rohan/DATA/VIT/Winter19-20/CSE1007/Lab/Sample%20Programs/StringDemo.java

Prof. Tulasi Prasad Sariki
50

String

● To overcome that approach we can create strings
like this:
– String str1 = new String("Welcome");
– String str2 = new String("Welcome");

Prof. Tulasi Prasad Sariki
51

Java String Methods

● char charAt(int index): It returns the character at
the specified index.

● Specified index value should be between 0 to
length() -1 both inclusive.

● It throws IndexOutOfBoundsException if index<0||
>= length of String.

Prof. Tulasi Prasad Sariki
52

Java String Methods

● boolean equals(Object obj): Compares the string
with the specified string and returns true if both
matches else false.

● boolean equalsIgnoreCase(String string): It works
same as equals method but it doesn’t consider the
case while comparing strings. It does a case
insensitive comparison.

Prof. Tulasi Prasad Sariki
53

Java String Methods

● int compareTo(String string): This method
compares the two strings based on the Unicode
value of each character in the strings.

● int compareToIgnoreCase(String string): Same as
CompareTo method however it ignores the case
during comparison.

Prof. Tulasi Prasad Sariki
54

Java String Methods

● boolean startsWith(String prefix, int offset): It
checks whether the substring (starting from the
specified offset index) is having the specified prefix
or not.

● boolean startsWith(String prefix): It tests whether
the string is having specified prefix, if yes then it
returns true else false.

● boolean endsWith(String suffix): Checks whether
the string ends with the specified suffix.

Prof. Tulasi Prasad Sariki
55

Java String Methods

● int hashCode(): It returns the hash code of the string.
● int indexOf(int ch): Returns the index of first

occurrence of the specified character ch in the string.
● int indexOf(int ch, int fromIndex): Same as indexOf

method however it starts searching in the string from
the specified fromIndex.

● int lastIndexOf(int ch): It returns the last occurrence of
the character ch in the string.

Prof. Tulasi Prasad Sariki
56

Java String Methods

● int lastIndexOf(int ch, int fromIndex): Same as
lastIndexOf(int ch) method, it starts search from
fromIndex.

● int indexOf(String str): This method returns the
index of first occurrence of specified substring str.

● int lastindexOf(String str): Returns the index of last
occurrence of string str.

Prof. Tulasi Prasad Sariki
57

Java String Methods

● String substring(int beginIndex): It returns the substring of the
string. The substring starts with the character at the specified
index.

● String substring(int beginIndex, int endIndex): Returns the
substring. The substring starts with character at beginIndex and
ends with the character at endIndex.

● String concat(String str): Concatenates the specified string “str”
at the end of the string.

● String replace(char oldChar, char newChar): It returns the new
updated string after changing all the occurrences of oldChar
with the newChar.

Prof. Tulasi Prasad Sariki
58

Java String Methods

● boolean contains(CharSequence s): It checks whether the string contains the
specified sequence of char values. If yes then it returns true else false. It
throws NullPointerException of ‘s’ is null.

● String toUpperCase(Locale locale): Converts the string to upper case string
using the rules defined by specified locale.

● String toUpperCase(): Equivalent to toUpperCase(Locale.getDefault()).
● public String intern(): This method searches the specified string in the

memory pool and if it is found then it returns the reference of it, else it
allocates the memory space to the specified string and assign the reference
to it.

● public boolean isEmpty(): This method returns true if the given string has 0
length. If the length of the specified Java String is non-zero then it returns
false.

Prof. Tulasi Prasad Sariki
59

Java String Methods

● public static String join(): This method joins the given
strings using the specified delimiter and returns the
concatenated Java String

● String replaceFirst(String regex, String replacement): It
replaces the first occurrence of substring that fits the given
regular expression “regex” with the specified replacement
string.

● String replaceAll(String regex, String replacement): It
replaces all the occurrences of substrings that fits the
regular expression regex with the replacement string.

Prof. Tulasi Prasad Sariki
60

Java String Methods

● String[] split(String regex, int limit): It splits the string and
returns the array of substrings that matches the given
regular expression. limit is a result threshold here.

● String[] split(String regex): Same as split(String regex, int
limit) method however it does not have any threshold limit.

● String toLowerCase(Locale locale): It converts the string to
lower case string using the rules defined by given locale.

● public static String format(): This method returns a
formatted java String

Prof. Tulasi Prasad Sariki
61

Java String Methods

● String toLowerCase(): Equivalent to toLowerCase(Locale.
getDefault()).

● String trim(): Returns the substring after omitting leading
and trailing white spaces from the original string.

● char[] toCharArray(): Converts the string to a character array.
● static String copyValueOf(char[] data): It returns a string that

contains the characters of the specified character array.
● static String copyValueOf(char[] data, int offset, int count):

Same as above method with two extra arguments – initial
offset of subarray and length of subarray

Prof. Tulasi Prasad Sariki
62

Java String Methods

● void getChars(int srcBegin, int srcEnd, char[] dest, int destBegin): It
copies the characters of src array to the dest array. Only the specified
range is being copied(srcBegin to srcEnd) to the dest
subarray(starting fromdestBegin).

● static String valueOf(): This method returns a string representation of
passed arguments such as int, long, float, double, char and char
array.

● boolean contentEquals(StringBuffer sb): It compares the string to the
specified string buffer.

● boolean regionMatches(int srcoffset, String dest, int destoffset, int
len): It compares the substring of input to the substring of specified
string.

Prof. Tulasi Prasad Sariki
63

Java String Methods

● boolean regionMatches(boolean ignoreCase, int srcoffset, String dest, int
destoffset, int len): Another variation of regionMatches method with the
extra boolean argument to specify whether the comparison is case sensitive
or case insensitive.

● byte[] getBytes(String charsetName): It converts the String into sequence of
bytes using the specified charset encoding and returns the array of resulted
bytes.

● byte[] getBytes(): This method is similar to the above method it just uses the
default charset encoding for converting the string into sequence of bytes.

● int length(): It returns the length of a String.
● boolean matches(String regex): It checks whether the String is matching with

the specified regular expression regex.

Prof. Tulasi Prasad Sariki
64

String is Immutable in Java

● In java, string objects are immutable. Immutable simply
means un-modifiable or unchangeable.

● Once string object is created its data or state can't be
changed but a new string object is created.

● Why string objects are immutable in java?
– Because java uses the concept of string literal. Suppose there are

5 reference variables,all refers to one object.
– If one reference variable changes the value of the object, it will be

affected to all the reference variables.
– That is why string objects are immutable in java.

Prof. Tulasi Prasad Sariki
65

String is Immutable in Java

● When we create a String using double quotes, it first looks
for the String with same value in the JVM string pool, if
found it returns the reference else it creates the String
object and then place it in the String pool.

● This way JVM saves a lot of space by using same String in
different threads. But if new operator is used, it explicitly
creates a new String in the heap memory.

● Since String is immutable in java, whenever we do String
manipulation like concat, substring etc, it generates a new
String and discard the older String for garbage collection.

Prof. Tulasi Prasad Sariki
66

String is Immutable in Java

class StringImmutable

{

 public static void main(String args[])

 {

 String s="Tulasi";

 String s1 = s.concat(" Prasad");

 System.out.println(s);

 System.out.println(s1);

 }

}

“Tulasi Prasad”

“Tulasi ”

Prof. Tulasi Prasad Sariki
67

StringBuffer and StringBuilder

● String manipulations are heavy operations and
generate a lot of garbage in heap.

● So Java has provided StringBuffer and StringBuilder
class that should be used for String manipulation.

● StringBuffer and StringBuilder are mutable objects in
java and provide append(), insert(), delete() and
substring() methods for String manipulation.

Prof. Tulasi Prasad Sariki
68

StringBuffer

● StringBuffer class is used to create mutable
(modifiable) string.

● The StringBuffer class in java is same as String class
except it is mutable i.e. it can be changed.

● Important Constructors of StringBuffer class
●

Prof. Tulasi Prasad Sariki
69

StringBuffer Methods

● length(): Returns the StringBuffer object’s length.
● capacity(): Returns the capacity of the StringBuffer object.
● append(): appends the specified argument string

representation at the end of the existing String Buffer.
● insert(): insert() method takes two parameters – the index

integer value to insert a value and the value to be
inserted. The index tells StringBuffer where to insert the
passed character sequence. Again this method is
overloaded to work with primitive data types and Objects

Prof. Tulasi Prasad Sariki
70

StringBuffer Methods

● reverse(): Reverses the existing String or character
sequence content in the buffer and returns it. The
object must have an existing content or else a
NullPointerException is thrown.

● delete(int startIndex, int endIndex): accepts two
integer arguments. The former serves as the starting
delete index and latter as the ending delete index.
Therefore the character sequence between startIndex
and endIndex–1 are deleted. The remaining String
content in the buffer is returned.

Prof. Tulasi Prasad Sariki
71

StringBuilder

● Java StringBuilder class is mutable sequence of characters.
StringBuilder Class can be comparable to String however the
StringBuilder class provides more versatility because of its
modification features.

● StringBuilder class provides an API similar to StringBuffer, but
unlike StringBuffer, it doesn’t guarantee thread safety.

● Java StringBuilder class is designed for use as a drop-in
replacement for StringBuffer in places where the string buffer
was being used by a single thread (as is generally the case).

● If execution speed and performance is a factor, StringBuilder
class can be used in place of StringBuffer.

Prof. Tulasi Prasad Sariki
72

StringBuffer vs StringBuilder

StringBuffer StringBuilder

Synchronized, hence thread safe. Not synchronized, not thread safe.

Operates slower due to thread safety
feature

Better performance compared to
StringBuffer

Has some extra methods – substring,
length, capacity etc.

Not needed because these methods are
present in String too

Introduced in Java 1.2 Introduced in Java 1.5 for better
performance.

Prof. Tulasi Prasad Sariki
73

String vs StringBuffer vs StringBuilder

● String is immutable whereas StringBuffer and
StringBuider are mutable classes.

● StringBuffer is thread safe and synchronized whereas
StringBuilder is not, thats why StringBuilder is more faster
than StringBuffer.

● String concat + operator internally uses StringBuffer or
StringBuilder class.

● For String manipulations in non-multi threaded
environment, we should use StringBuilder else use
StringBuffer class.

Prof. Tulasi Prasad Sariki
74

Wrapper Classes

● In the OOPs concepts guide, we learned that object
oriented programming is all about objects.

● The eight primitive data types byte, short, int, long, float,
double, char and boolean are not objects, Wrapper classes
are used for converting primitive data types into objects,
like int to Integer etc.

Prof. Tulasi Prasad Sariki
75

Wrapper Classes

Primitive Wrapper class

boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

Prof. Tulasi Prasad Sariki
76

Why we need wrapper class in Java

● The primitive data types are not objects so they do not
belong to any class. While storing in data structures which
support only objects, it is required to convert the primitive
type to object first which we can do by using wrapper classes.

● Wrapper objects hold much more memory compared to
primitive types. So use primitive types when you need
efficiency and use wrapper class when you need objects
instead of primitive types.

● Wrapper class objects allow null values while primitive data
type doesn’t allow it.

Prof. Tulasi Prasad Sariki
77

Wrapper Classes

Converting a primitive type to Wrapper object

public class JavaExample{

 public static void main(String args[])

{

int num=100;

Integer obj=Integer.valueOf(num);

System.out.println(num+ " "+ obj);

 }

}

Prof. Tulasi Prasad Sariki
78

Wrapper Classes

public class JavaExample{

 public static void main(String args[]){

//Creating Wrapper class object

Integer obj = new Integer(100);

//Converting the wrapper object to primitive

int num = obj.intValue();

System.out.println(num+ " "+ obj);

 }

}

Prof. Tulasi Prasad Sariki
79

References

● https://docs.oracle.com/javase/tutorial/
● https://www.javatpoint.com/features-of-java
● http://www.java2novice.com/java-fundamentals/
● http://archive.oreilly.com/oreillyschool/courses/java2/
● https://docs.oracle.com/javase/7/docs/api/
● https://www.javatpoint.com/
● https://beginnersbook.com/java-tutorial-for-beginners-wi

th-examples/

https://docs.oracle.com/javase/tutorial/
https://www.javatpoint.com/features-of-java
http://www.java2novice.com/java-fundamentals/
http://archive.oreilly.com/oreillyschool/courses/java2/
https://docs.oracle.com/javase/7/docs/api/
https://www.javatpoint.com/
https://beginnersbook.com/java-tutorial-for-beginners-with-examples/
https://beginnersbook.com/java-tutorial-for-beginners-with-examples/

Prof. Tulasi Prasad Sariki
80

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

