
CSE1007
Java Programming

Prof. Tulasi Prasad Sariki
SCSE, VIT, Chennai

www.learnersdesk.weebly.com

Slot: B1+TB1 Venue: AB1-810
Module -II Object Oriented Programming

http://www.learnersdesk.weebly.com/

Prof. Tulasi Prasad Sariki
2

Course Contents:

● Class Fundamentals
– Object & Object reference

● array of objects
● Constructors
● Methods

– Overloading
● “this” reference
● static block
● nested class

● inner class
● garbage collection
● Finalize()
● Inheritance

– Types
● use of “super”
● Polymorphism
● abstract class
● Interfaces
● packages and sub packages

Prof. Tulasi Prasad Sariki
3

Objects and Classes in Java

● In object-oriented programming, we design a program using objects
and classes.

● Classes and Objects are basic concepts of Object Oriented
Programming which revolve around the real life entities.

● An object in Java is the physical as well as logical entity whereas a
class in Java is a logical entity only.

● What is an object in Java?
– An entity that has state and behavior is known as an object. e.g.

chair, bike, marker, pen, table, car etc.
– It can be physical or logical (tangible and intangible). The example

of an intangible object is the banking system.

Prof. Tulasi Prasad Sariki
4

Object in Java

Prof. Tulasi Prasad Sariki
5

Object Initialization

● Initializing an object means storing data into the
object.

● There are 3 ways to initialize object in java.
– By reference variable
– By method
– By constructor

Prof. Tulasi Prasad Sariki
6

Object Initialization through reference

class Student

{ int id;

 String name;

 }

 class TestStudent2{

 public static void main(String args[]){

 Student s1=new Student();

 s1.id=101;

 s1.name="Abhinav";

 System.out.println(s1.id+" "+s1.name);

 } }
Note: We can create multiple objects & store information in it through reference variable.

Prof. Tulasi Prasad Sariki
7

Object Initialization through method

 class Student

{ int rollno;

 String name;

 void insertRecord(int r, String n)

 { rollno=r;

 name=n; }

 void displayInformation()

 { System.out.println(rollno+" "+name);

 } }

 class TestStudent4

{ public static void main(String args[])

 { Student s1=new Student();

 Student s2=new Student();

 s1.insertRecord(111,"Karan");

 s2.insertRecord(222,"Aryan");

 s1.displayInformation();

 s2.displayInformation();

 } }

Prof. Tulasi Prasad Sariki
8

Class in Java

● A class is a group of objects which have common properties.
● It is a template or blueprint from which objects are created.

It is a logical entity. It can't be physical.
● A class in Java can contain:

– Fields
– Methods
– Constructors
– Blocks
– Nested class and interface

Syntax

class <class_name>
{
 fields;
 methods;
}

Prof. Tulasi Prasad Sariki
9

Class in Java

● A class's body is populated with fields, methods, and constructors.
● Combining these language features into classes is known as

encapsulation.
● This capability lets us program at a higher level of abstraction

(classes and objects) rather than focusing separately on data
structures and functionality.

● A Java application is implemented by one or more classes. Small
applications can be accommodated by a single class, but larger
applications often require multiple classes. In that case one of the
classes is designated as the main class and contains the main()
entry-point method.

Prof. Tulasi Prasad Sariki
10

Class in Java

● Instance variable in Java
– A variable which is created inside the class but outside the method is known as an

instance variable. Instance variable doesn't get memory at compile time. It gets
memory at runtime when an object or instance is created. That is why it is known as an
instance variable(if you want to keep it common for the entire class make it as static).

● Method in Java
– In Java, a method is like a function which is used to expose the behavior of an object.

● Advantage of Method
– Code Re-usability
– Code Optimization

● new keyword in Java
– The new keyword is used to allocate memory at runtime. All objects get memory in

Heap memory area.

Prof. Tulasi Prasad Sariki
11

Fields: Describing attributes

● A class models a real-world entity in terms of state
(attributes).

● For example, a vehicle has a color and a checking account
has a balance.
– [static] type identifier [= expression] ;
– These fields are known as instance fields

because each object contains its own copy of them.

class Vehicle

{

 String model;

 int manfYear;

}

Prof. Tulasi Prasad Sariki
12

Lifetime and scope

● An instance field is born when its object is created and dies
when the object is garbage collected.

● A class field is born when the class is loaded and dies when
the class is unloaded or when the application ends.

● Instance and class fields are accessible from their
declarations to the end of their declaring classes.

● They are accessible to external code in an object context
only (for instance fields) or object and class contexts (for
class fields) when given suitable access levels.

Prof. Tulasi Prasad Sariki
13

Methods: Describing behaviors

● In addition to modeling the state of a real-world entity, a
class also models its behaviors.

● For example, a vehicle supports movement and a checking
account supports deposits and withdrawals.

● Java programmers use methods to describe behaviors.
● A class can also include non-entity behaviors.
[static] returnType identifier([parameterList])
{
 // method body
}

Prof. Tulasi Prasad Sariki
14

Example

class Book

{

 // ...

 String getTitle()

 {

 return title;

 }

 int getPubYear()

 {

 return pubYear;

 }

 void setTitle(String _title)

 {

 title = _title;

 }

 void setPubYear(int _pubYear)

 {

 pubYear = _pubYear;

 }

}

Prof. Tulasi Prasad Sariki
15

Setters and getters

● The "set" prefix identifies setTitle() and setPubYear() as
setter methods, meaning that they set values.

● Similarly, the "get" prefix identifies getTitle() and
getPubYear() as getter methods, which means that they
get values.

Prof. Tulasi Prasad Sariki
16

Local variables

● Within a method or constructor, you can declare additional
variables as part of its implementation.

● These variables are known as local variables because they
are local to the method/constructor.

● They exist only while the method or constructor is
executing and cannot be accessed from outside the
method/constructor.

Prof. Tulasi Prasad Sariki
17

Object and Class Example:

class Student

{ int id;

 String name;

 public static void main(String args[])

{ //Creating an object or instance

 Student s1=new Student();//creating an object of Student

 System.out.println(s1.id);//accessing member through reference variable

 System.out.println(s1.name);

 } }

Prof. Tulasi Prasad Sariki
18

Object and Class Example

 class Student

{ int id;

 String name; }

 class TestStudent1{

 public static void main(String args[]){

 Student s1=new Student();

 System.out.println(s1.id);

 System.out.println(s1.name);

 } }

Prof. Tulasi Prasad Sariki
19

Method overloading

● Java lets you declare methods with the same name but with
different parameter lists in the same class.

● This feature is known as method overloading.
● When the compiler encounters a method-call expression, it

compares the called method with each overloaded
method(parameter list) for the correct method to call.

● Two same-named methods are overloaded when their
parameter lists differ in number or order or type of parameters.

● You cannot overload a method by changing only the return
type.

Prof. Tulasi Prasad Sariki
20

Example

void draw(Shape shape)

{ // drawing code }

void draw(Shape shape, double x, double y)

{ // drawing code }

void draw(String string)

{ // drawing code }

void draw(String string, double x, double y)

{ // drawing code }

Prof. Tulasi Prasad Sariki
21

Object Initialization through constructor

● A class can declare one or more blocks of code for more
extensive object initialization.

● Each code block is a constructor. Its declaration consists of a
header followed by a brace-delimited body.

● The header consists of a class name (a constructor doesn't have
its own name) followed by an optional parameter list.

className ([parameterList])

{

 // constructor body

}

Prof. Tulasi Prasad Sariki
22

Default no-argument constructor

● When a class doesn't declare any constructors, the compiler
generates a default no-argument(Zero Parameter) constructor.

class Experiment

{

int a=10;

public static void main(String[] args)

{

Experiment e=new Experiment(); //default constructor//

}

}

Prof. Tulasi Prasad Sariki
23

Constructor

● In Java, a constructor is a block of codes similar to the
method.

● It is called when an instance of the object is created, and
memory is allocated for the object.

● It is a special type of method which is used to initialize the
object.

● Every time an object is created using new() keyword, at
least one constructor is called. It calls a default
constructor.

Prof. Tulasi Prasad Sariki
24

Constructor

● Rules for creating Java constructor
– Constructor name must be the same as its class name.
– A Constructor must have no explicit return type.
– A Java constructor cannot be abstract, static, final, and

synchronized.
– We can use access modifiers while declaring a

constructor. It controls the object creation.
– In other words, we can have private, protected, public or

default constructor in Java.

Prof. Tulasi Prasad Sariki
25

Constructor

● Types of Java constructors

1. Default constructor (no-arg constructor)

If there is no constructor in a class, compiler automatically
creates a default constructor.

The default constructor is used to provide the default values
to the object like 0, null, etc., depending on its type.

Prof. Tulasi Prasad Sariki
26

Constructor

● Types of Java constructors

2. Parametrized Constructor
– A constructor which has a specific number of parameters

is called a parametrized constructor.
– The parametrized constructor is used to provide different

values to the distinct objects.
– However, you can provide the same values also.

Prof. Tulasi Prasad Sariki
27

Constructor Overloading

● In Java, a constructor is just like a method but without
return type.

● It can also be overloaded like Java methods.
● Constructor overloading in Java is a technique of having

more than one constructor with different parameter lists.
● They are arranged in a way that each constructor performs

a different task.
● They are differentiated by the compiler by the number of

parameters, their type and their order in the list .

Prof. Tulasi Prasad Sariki
28

Constructor VS method

Java Constructor Java Method

A constructor is used to initialize the state of
an object.

A method is used to expose the behavior of
an object.

A constructor must not have a return type. A method must have a return type.

The constructor is invoked implicitly. The method is invoked explicitly.

The Java compiler provides a default
constructor if you don't have any constructor
in a class.

The method is not provided by the compiler
in any case. Depending on the requirement
programmer has to create.

The constructor name must be same as the
class name.

The method name may or may not be same
as class name.

Constructors cannot be abstract, final, static
and synchronized.

 methods can be be abstract, final, static
and synchronized

Prof. Tulasi Prasad Sariki
29

Copy Constructor

● There is no copy constructor in java. However, we can copy
the values from one object to another like copy
constructor in C++.

● There are many ways to copy the values of one object into
another in java. They are:
– By constructor
– By assigning the values of one object into another
– By clone() method of Object class

Prof. Tulasi Prasad Sariki
30

this reference

● Keyword this is a reference variable in Java that
refers to the current object.

● The various usages of 'this'
– It can be used to refer instance variable of current class
– It can be used to invoke or initiate current class constructor
– It can be passed as an argument in the method call
– It can be passed as argument in the constructor call
– It can be used to return the current class instance

Prof. Tulasi Prasad Sariki
31

Use of static

● Static members belong to the class instead of a
specific instance, this means if you make a member
static, you can access it without object.

● static keyword can be use with
– Class
– Block
– Method
– Variable

Prof. Tulasi Prasad Sariki
32

Use of static

● Static members are common for all the instances(objects)
of the class but non-static members are separate for each
instance of class.

● Static block is used for initializing the static variables. This
block gets executed when the class is loaded in the
memory. A class can have multiple Static blocks, which
will execute in the same sequence in which they have been
written into the program.

Prof. Tulasi Prasad Sariki
33

Use of static

● A static variable is common to all the instances (or objects)
of the class because it is a class level variable.

● In other words you can say that only a single copy of static
variable is created and shared among all the instances of
the class.

● Memory allocation for such variables only happens once
when the class is loaded in the memory.

Prof. Tulasi Prasad Sariki
34

Use of static

● Static Methods can access class variables(static variables)
without using object(instance) of the class, however non-
static methods and non-static variables can only be accessed
using objects.

● Static methods can be accessed directly in static and non-
static methods.

● A class can be made static only if it is a nested class.
● Nested static class doesn’t need reference of Outer class
● A static class cannot access non-static members of the Outer

class

Prof. Tulasi Prasad Sariki
35

Static vs. Non-Static Methods

● Characteristics of Static Methods
● A static method can access static methods and variables as follows:

– A static method can call only other static methods; it cannot call a non-static method
– A static method can be called directly from the class, without having to create an instance of the

class
– A static method can only access static variables; it cannot access instance variables
– Since the static method refers to the class, the syntax to call or refer to a static method is: class

name.method name
● To access a non-static method from a static method, create an instance of the class
● Characteristics of Non-Static Methods
● A non-static method in Java can access static methods and variables as follows:

– A non-static method can access any static method without creating an instance of the class
– A non-static method can access any static variable without creating an instance of the class because

the static variable belongs to the class

Prof. Tulasi Prasad Sariki
36

Nested Classes

● Like we have nested loops, it is possible to create nested
classes in Java, i.e. a class within another class.

● The scope of such a class depends upon the scope of the
enclosing class.

● Nested classes are divided into two categories: static and
non-static.
– Nested classes that are declared static are called static

nested classes.
– Non-static nested classes are called inner classes.

Prof. Tulasi Prasad Sariki
37

Nested Classes

class OuterClass {

 ...

 static class StaticNestedClass {

 ...

 }

 class InnerClass {

 ...

 }

}

● A nested class is a member of its
enclosing class.

● Non-static nested classes (inner
classes) have access to other
members of the enclosing class,
even if they are declared private.

● Static nested classes do not have
access to other members of the
enclosing class.

● As a member of the OuterClass, a
nested class can be declared
private, public, protected, or
package private.

Prof. Tulasi Prasad Sariki
38

Example

class CPU {

 double price;

 class Processor{

 double cores;

 String manufacturer;

 double getCache(){ return 4.3;} }

 protected class RAM{

 double memory;

 String manufacturer;

 double getClockSpeed(){ return 5.5; } } }

Prof. Tulasi Prasad Sariki
39

Example

public class Main {

 public static void main(String[] args) {

 CPU cpu = new CPU();

 CPU.Processor processor = cpu.new Processor();

 CPU.RAM ram = cpu.new RAM();

 System.out.println("Cache = " + processor.getCache());

 System.out.println("Clock speed = " + ram.getClockSpeed());

 } } Output
Cache = 4.3
Clock speed = 5.5

Prof. Tulasi Prasad Sariki
40

Why Use Nested Classes?

● It is a way of logically grouping classes that are only used in one
place: If a class is useful to only one other class, then it is logical to
embed it in that class and keep the two together. Nesting such
"helper classes" makes their package more streamlined.

● It increases encapsulation: Consider two top-level classes, A and B,
where B needs access to members of A that would otherwise be
declared private. By hiding class B within class A, A's members can
be declared private and B can access them. In addition, B itself can
be hidden from the outside world.

● It can lead to more readable and maintainable code: Nesting small
classes within top-level classes places the code closer to where it is
used.

Prof. Tulasi Prasad Sariki
41

Garbage Collection

● In C/C++, programmer is responsible for both creation and destruction
of objects. Usually programmer neglects destruction of useless objects.
Due to this negligence, at certain point, for creation of new objects,
sufficient memory may not be available and entire program will
terminate abnormally causing OutOfMemoryErrors.

● But in Java, the programmer need not to care for all those objects
which are no longer in use. Garbage collector destroys these objects.

● Garbage collector is best example of Daemon thread as it is always
running in background.

● Main objective of Garbage Collector is to free heap memory by
destroying unreachable(non-referenced) objects.

Prof. Tulasi Prasad Sariki
42

Garbage Collection

● An object is said to be unreachable if it doesn’t contain any
reference to it.
– Integer i = new Integer(4);
– // the new Integer object is reachable

 via the reference in 'i'
– i = null;
– // the Integer object is no longer

reachable.

Prof. Tulasi Prasad Sariki
43

Ways to make an object eligible for GC

● Even though programmer is not responsible to destroy
useless objects but it is highly recommended to make an
object unreachable(thus eligible for GC) if it is no longer
required.

● There are generally four different ways to make an object
eligible for garbage collection.
– Nullifying the reference variable
– Re-assigning the reference variable
– Object created inside method
– Island of Isolation

https://www.geeksforgeeks.org/island-of-isolation-in-java/

Prof. Tulasi Prasad Sariki
44

Requesting JVM to run Garbage Collector

● Once we made object eligible for garbage collection, it may not
destroy immediately by garbage collector. Whenever JVM runs
Garbage Collector program, then only object will be destroyed.
But when JVM runs Garbage Collector, we can not expect.

● We can also request JVM to run Garbage Collector. There are two
ways to do it :
– Using System.gc() method : System class contain static method gc() for

requesting JVM to run Garbage Collector.
– Using Runtime.getRuntime().gc() method : Runtime class allows the

application to interface with the JVM in which the application is running.
Hence by using its gc() method, we can request JVM to run Garbage
Collector.

Prof. Tulasi Prasad Sariki
45

finalize method

● Just before destroying an object, Garbage Collector calls finalize() method on
the object to perform cleanup activities. Once finalize() method completes,
Garbage Collector destroys that object.

● finalize() method is present in Object class with following prototype.
– protected void finalize() throws Throwable

● Based on our requirement, we can override finalize() method for perform our
cleanup activities like closing connection from database.
– The finalize() method called by Garbage Collector not JVM. Although Garbage Collector is

one of the module of JVM.
– Object class finalize() method has empty implementation, thus it is recommended to

override finalize() method to dispose of system resources or to perform other cleanup.
– The finalize() method is never invoked more than once for any given object.
– If an uncaught exception is thrown by the finalize() method, the exception is ignored and

finalization of that object terminates.

Prof. Tulasi Prasad Sariki
46

Types of Inheritance

● Types of Inheritance supported in java
– Single Inheritance
– Multiple Inheritance (Through Interface)
– Multilevel Inheritance
– Hierarchical Inheritance
– Hybrid Inheritance (Through Interface)

Prof. Tulasi Prasad Sariki
47

 Single Inheritance

● Single Inheritance is the simple inheritance of all, When a
class extends another class(Only one class) then we call it as
Single inheritance.

Prof. Tulasi Prasad Sariki
48

Multiple Inheritance

● Multiple Inheritance is nothing but one class extending more
than one class.

● Multiple Inheritance is supported in Java using Interfaces.

Prof. Tulasi Prasad Sariki
49

Multilevel Inheritance

● In Multilevel Inheritance a derived class will be inheriting a
parent class and as well as the derived class act as the
parent class to other class.

Prof. Tulasi Prasad Sariki
50

Hierarchical inheritance

● In Hierarchical inheritance one parent class will be inherited
by many sub classes.

● As per the below example ClassA will be inherited by ClassB,
ClassC and ClassD. ClassA will be acting as a parent class for
ClassB, ClassC and ClassD.

Prof. Tulasi Prasad Sariki
51

Hybrid Inheritance

● Hybrid Inheritance is the combination of both Single and
Multiple Inheritance.

● ClassA will be acting as the Parent class for ClassB & ClassC
and ClassB & ClassC will be acting as Parent for ClassD.

Prof. Tulasi Prasad Sariki
52

Usage of Java super Keyword

● super can be used to refer immediate parent class instance
variable.

● super can be used to invoke immediate parent class method.
● super() can be used to invoke immediate parent class

constructor.

Prof. Tulasi Prasad Sariki
53

Example -1

● class Animal{ String color="white"; }
● class Dog extends Animal{ String color="black";
● void printColor(){
● System.out.println(color);//prints color of Dog class
● System.out.println(super.color);//prints color of Animal class } }
● class TestSuper1{
● public static void main(String args[]){
● Dog d=new Dog();
● d.printColor();
● }}

Output
black
white

Prof. Tulasi Prasad Sariki
54

Example -2

● class Animal{ void eat(){System.out.println("eating...");} }
● class Dog extends Animal{
● void eat(){System.out.println("eating bread...");}
● void bark(){System.out.println("barking...");}
● void work(){
● super.eat();
● bark(); } }
● class TestSuper2{
● public static void main(String args[]){
● Dog d=new Dog();
● d.work();
● }}

Output
eating...
barking...

Prof. Tulasi Prasad Sariki
55

Example-3

● class Animal{
● Animal(){System.out.println("animal is created");} }
● class Dog extends Animal{
● Dog(){
● super();
● System.out.println("dog is created"); } }
● class TestSuper3{
● public static void main(String args[]){
● Dog d=new Dog(); }}

Output
animal created
dog created

Prof. Tulasi Prasad Sariki
56

Abstraction in Java

● Abstraction is a process of hiding the implementation details and
showing only functionality to the user.

● Another way, it shows only essential things to the user and hides
the internal details, for example, sending SMS where you type the
text and send the message. You don't know the internal
processing about the message delivery.

● Abstraction lets you focus on what object does instead of how it
does.

● There are two ways to achieve abstraction in java
– Abstract class (0 to 100%)
– Interface (100%)

Prof. Tulasi Prasad Sariki
57

Abstract class

● A method which is declared as abstract and does not have
implementation is known as an abstract method.

● An abstract class must be declared with an abstract
keyword.

● It can have abstract and non-abstract methods.
● It cannot be instantiated.
● It can have constructors and static methods also.
● It can have final methods which will force the subclass not to

change the body of the method.

Prof. Tulasi Prasad Sariki
58

Interface

● Interface looks like a class but it is not a class.
● An interface can have methods and variables just like the class but the

methods declared in interface are by default abstract.
● The variables declared in an interface are public, static & final by default.
● Interfaces are used for full abstraction. Since methods in interfaces do

not have body, they have to be implemented by the class before you can
access them.

● The class that implements interface must implement all the methods of
that interface.

● Java does not allow you to extend more than one class, However you can
implement more than one interfaces in your class.

Prof. Tulasi Prasad Sariki
59

Interface

● Syntax:
– Interfaces are declared by a keyword called “interface”.

interface MyInterface

{

 /* All the methods are public abstract by default

 * As you see they have no body

 */

 public void method1();

 public void method2();

}

Prof. Tulasi Prasad Sariki
60

The relationship b/w classes and interfaces

Prof. Tulasi Prasad Sariki
61

Implementing an Interface and extends class

Prof. Tulasi Prasad Sariki
62

Abstract Class vs. Interface

Abstract Class Interface

An abstract class can extend only one class
or one abstract class at a time

 An interface can extend any number of
interfaces at a time

An abstract class can have both abstract
and concrete methods

An interface can have only abstract
methods

In abstract class keyword “abstract” is
mandatory to declare a method as an
abstract

In an interface keyword “abstract” is optional
to declare a method as an abstract

An abstract class can have protected and
public abstract methods

An interface can have only have public
abstract methods

Prof. Tulasi Prasad Sariki
63

Packages

● A java package is a group of similar types of classes, interfaces and sub-
packages.

● Package in java can be categorized in to two forms, built-in packages
and user-defined packages.

● There are many built-in packages such as lang, awt, javax, swing, net,
io, util, sql etc.

● Advantage of Java Package
1) Java package is used to categorize the classes and interfaces so that they can be
easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

4) Re-usability and Data Encapsulation

Prof. Tulasi Prasad Sariki
64

Packages

● Every class is part of some package.
● All classes in a file are part of the same package.
● You can specify the package using a package declaration:

– package name ; as the first (non-comment) line in the file.
● Multiple files can specify the same package name.
● If no package is specified, the classes in the file go into a special

unnamed package (the same unnamed package for all files).
● If package name is specified, the file must be in a sub-directory

called name (i.e., the directory name must match the package
name).

Prof. Tulasi Prasad Sariki
65

Packages

● You can access public classes in another (named) package using:
– package-name.class-name

● You can access the public fields and methods of such classes using:
– package-name.class-name.field-or-method-name

● You can avoid having to include the package-name using:
– import package-name.*;

 Or
– import package-name.class-name;

● The former imports all of the classes in the package, and the
second imports just the named class.

Prof. Tulasi Prasad Sariki
66

Example

 //save as Simple.java

 package mypack;

 public class Simple

 {

 public static void main(String args[])

 {

 System.out.println("Welcome to package");

 }

 }

Prof. Tulasi Prasad Sariki
67

Example

● How to compile java package
– javac -d directory javafilename
– javac -d . Simple.java

● How to run java package program
– java mypack.Simple

● Note:
– The -d switch specifies the destination where to put the generated class file.
– You can use any directory name like /home (in case of Linux), d:/abc (in case

of windows) etc.
– If you want to keep the package within the same directory, you can use .

(dot).

Prof. Tulasi Prasad Sariki
68

Accessing package from another package

● There are 3 ways to access the package from outside the
package.
– import package.*;
– import package.classname;
– fully qualified name.

● 1. Using packagename.*
– If you use package.* then all the classes and interfaces of this

package will be accessible but not subpackages.

Prof. Tulasi Prasad Sariki
69

Example

package pack; //save by A.java

public class A{ public void msg(){System.out.println("Hello");} }

package mypack; //save by B.java

import pack.*;

 class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg(); } }

Prof. Tulasi Prasad Sariki
70

Accessing package from another package

● 2. Using packagename.classname
– If you import package.classname then only declared class of

this package will be accessible.

package pack; //save by A.java
public class A{ public void msg(){System.out.println("Hello");} }
package mypack; //save by B.java
import pack.A;
 class B{
 public static void main(String args[]){
 A obj = new A();
 obj.msg(); } }

Prof. Tulasi Prasad Sariki
71

Accessing package from another package

● 3. Using fully qualified name

– Now there is no need to import. But you need to use fully
qualified name every time when you are accessing the class or
interface.

package pack; //save by A.java
public class A{ public void msg(){System.out.println("Hello");} }
package mypack; //save by B.java
 class B{
 public static void main(String args[]){
 pack.A obj = new pack.A(); //using fully qualified name
 obj.msg(); } }
Note: It is generally used when two packages have same class name
Example: java.util and java.sql packages contain Date class.

Prof. Tulasi Prasad Sariki
72

Subpackage in java

● Package inside the package is called the subpackage. It should be
created to categorize the package further.

● The standard of defining package is domain.company.package

– e.g. in.vit.cse1007
● Example

– package in.vit.cse1007;
– class Simple{
– public static void main(String args[]){
– System.out.println("Hello subpackage"); } }

To Compile: javac -d . Simple.java

To Run: java in.vit.cse1007.Simple

Prof. Tulasi Prasad Sariki
73

sending the class files to another directory

● To Compile:
– e:\sources> javac -d c:\classes Simple.java

● To Run:
– e:\sources> set classpath=c:\classes
– e:\sources> java mypack.Simple

file:///../c:/classes

Prof. Tulasi Prasad Sariki
74

Access Modifiers in java

● There are two types of modifiers in java: access modifiers and non-
access modifiers.

● The access modifiers in java specifies accessibility (scope) of a data
member, method, constructor or class.

● There are 4 types of java access modifiers:
– public
– private
– protected
– default

● There are many non-access modifiers such as static, abstract,
synchronized, native, volatile, transient etc.

Prof. Tulasi Prasad Sariki
75

Access Modifiers in java

● 1. private access modifier

– The private access modifier is accessible only within class.

 class A{

 private int data=40;

 private void msg(){System.out.println("Hello java");} }

 public class Simple{

 public static void main(String args[]){

 A obj=new A();

 System.out.println(obj.data);//Compile Time Error

 obj.msg();//Compile Time Error } }

Prof. Tulasi Prasad Sariki
76

Role of Private Constructor

● If you make any class constructor private, you cannot create the
instance of that class from outside the class. For example:

 class A{

 private A(){}//private constructor

 void msg(){System.out.println("Hello java");} }

 public class Simple{

 public static void main(String args[]){

 A obj=new A();//Compile Time Error } }
● Note: A class cannot be private or protected except nested class.

Prof. Tulasi Prasad Sariki
77

Access Modifiers in java

● 2) default access modifier
– If you don't use any modifier, it is treated as default (by default).
– The default modifier is accessible only within package.

 package pack; //save by A.java

 class A{ void msg(){System.out.println("Hello");} }

 package mypack; //save by B.java

 import pack.*;

 class B{

 public static void main(String args[]){

 A obj = new A();//Compile Time Error

 obj.msg();//Compile Time Error } }
● In the above example, the scope of class A and its method msg() is default so it cannot be

accessed from outside the package.

Prof. Tulasi Prasad Sariki
78

Access Modifiers in java

● 3) protected access modifier
– The protected access modifier is accessible within package and outside the package but through

inheritance only.
– The protected access modifier can be applied on the data member, method and constructor. It

can't be applied on the class.

 package pack; //save by A.java

 public class A{ protected void msg(){System.out.println("Hello");} }

 package mypack; //save by B.java

 import pack.*;

 class B extends A{

 public static void main(String args[]){

 B obj = new B();

 obj.msg(); } }

Prof. Tulasi Prasad Sariki
79

Access Modifiers in java

● 4. public access modifier
– The public access modifier is accessible everywhere. It has the widest scope among

all other modifiers.

 package pack; //save by A.java

 public class A{ public void msg(){System.out.println("Hello");} }

 package mypack; //save by B.java

 import pack.*;

 class B{

 public static void main(String args[]){

 A obj = new A();

 obj.msg(); } }

Prof. Tulasi Prasad Sariki
80

Understanding all java access modifiers

Access
Modifier

within
class

within
package

outside package
by subclass only

outside
package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

Prof. Tulasi Prasad Sariki
81

References

● https://docs.oracle.com/javase/tutorial/

● https://www.javatpoint.com/features-of-java

● http://www.java2novice.com/java-fundamentals/

● http://archive.oreilly.com/oreillyschool/courses/java2/

● https://docs.oracle.com/javase/7/docs/api/

● https://www.javatpoint.com/

● https://beginnersbook.com/java-tutorial-for-beginners-with-examples/

● https://www.javaworld.com/

● https://www.geeksforgeeks.org/

https://docs.oracle.com/javase/tutorial/
https://www.javatpoint.com/features-of-java
http://www.java2novice.com/java-fundamentals/
http://archive.oreilly.com/oreillyschool/courses/java2/
https://docs.oracle.com/javase/7/docs/api/
https://www.javatpoint.com/
https://beginnersbook.com/java-tutorial-for-beginners-with-examples/
https://www.javaworld.com/
https://www.geeksforgeeks.org/

Prof. Tulasi Prasad Sariki
82

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

