
CSE1007
Java Programming

Prof. Tulasi Prasad Sariki
SCSE, VIT, Chennai

www.learnersdesk.weebly.com

Slot: A2+TA2 Venue: AB1-409
Module -III Robustness and Concurrency

http://www.learnersdesk.weebly.com/

Prof. Tulasi Prasad Sariki
2

Course Contents:

● Exception Handling
– Exceptions & Errors
– Types of Exception
– Use of try, catch, finally, throw, throws
– Control Flow in Exceptions
– user defined exceptions

● Multithreading
– Thread creation
– sharing the workload among threads
– Synchronization
– Deadlock
– Inter thread communication

Prof. Tulasi Prasad Sariki
3

Exception Handling

● Exception handling is one of the most important feature of java
programming that allows us to handle the run-time errors
caused by exceptions.

● What is an exception?

An Exception is an unwanted event that interrupts the normal
flow of the program. When an exception occurs program
execution gets terminated. The good thing about exceptions is
that they can be handled in Java. By handling the exceptions we
can provide a meaningful message to the user about the issue
rather than a system generated message, which may not be
understandable to a user.

Prof. Tulasi Prasad Sariki
4

Exception Handling

● Why an exception occurs?
– There can be several reasons that can cause a program to

throw exception.
– Example: Opening a non-existing file in your program, Network

connection problem, bad input data provided by user etc.
● Advantage of exception handling

– Exception handling ensures that the flow of the program
doesn’t break when an exception occurs.

– By handling we make sure that all the statements execute and
the flow of program doesn’t break.

Prof. Tulasi Prasad Sariki
5

Error and Exception

● Errors indicate that something severe enough has gone wrong,
the application should crash rather than try to handle the error.

● Exceptions are events that occurs in the code. A programmer can
handle such conditions and take necessary corrective actions.
Few examples:
– NullPointerException – When you try to use a reference that points to null.
– ArithmeticException – When bad data is provided by user, for example,

when you try to divide a number by zero this exception occurs because
dividing a number by zero is undefined.

– ArrayIndexOutOfBoundsException – When you try to access the elements
of an array out of its bounds,

Prof. Tulasi Prasad Sariki
6

Class Hierarchy of Exception

Prof. Tulasi Prasad Sariki
7

Types of exceptions

● There are two types of exceptions in Java
● 1. Checked exceptions:

– All exceptions other than Runtime Exceptions are known as
Checked exceptions as the compiler checks them during
compilation to see whether the programmer has handled
them or not.

– If these exceptions are not handled/declared in the program,
you will get compilation error.

– Example, SQLException, IOException, ClassNotFoundException
etc.

Prof. Tulasi Prasad Sariki
8

Types of exceptions

● There are two types of exceptions in Java
● 2. Unchecked exceptions

– Runtime Exceptions are also known as Unchecked Exceptions.
– These exceptions are not checked at compile-time so compiler

does not check whether the programmer has handled them or
not but it’s the responsibility of the programmer to handle
these exceptions and provide a safe exit.

– For Example: ArithmeticException, NullPointerException,
ArrayIndexOutOfBoundsException etc.

Prof. Tulasi Prasad Sariki
9

Try Block

● Try block
– The try block contains set of statements where an exception can occur.
– A try block is always followed by a catch block, which handles the exception that

occurs in associated try block.
– A try block must be followed by catch blocks or finally block or both

● Syntax of try block
try{

 //statements that may cause an exception

}
● While writing a program, if you think that certain statements in a

program can throw a exception, enclosed them in try block and handle
that exception

Prof. Tulasi Prasad Sariki
10

Catch Block

● A catch block is where you handle the exceptions, this block
must follow the try block.

● A single try block can have several catch blocks associated
with it.

● You can catch different exceptions in different catch blocks.
● When an exception occurs in try block, the corresponding

catch block that handles that particular exception executes.
● For example if an arithmetic exception occurs in try block

then the statements enclosed in catch block for arithmetic
exception executes.

Prof. Tulasi Prasad Sariki
11

Try catch syntax

try

{

 //statements that may cause an exception

}

catch (exception(type) e(object))

{

 //error handling code

}

Prof. Tulasi Prasad Sariki
12

Example

class Example{

 public static void main(String args[]) {

 int num1, num2;

 try {

 Num1 = 0; num2 = 62 / num1;

 System.out.println(num2);

 System.out.println("Hey I'm at the end of try block");

 }

 catch (ArithmeticException e) {

System.out.println("You should not divide a number by zero");}

 System.out.println("I'm out of try-catch block in Java."); } }

Prof. Tulasi Prasad Sariki
13

Multiple catch blocks

● 1. A single try block can have any number of catch blocks.
● 2. A generic catch block can handle all the exceptions.
● 3. If no exception occurs in try block then the catch blocks are

completely ignored.
● 4. Corresponding catch blocks execute for that specific type of

exception:
– catch(ArithmeticException e) is a catch block that can hanlde

ArithmeticException
– catch(NullPointerException e) is a catch block that can handle

NullPointerException.
● Use can throw exception (User-defined exception)

Prof. Tulasi Prasad Sariki
14

Example

class Example{

 public static void main(String args[]){

 try{

 int a[]=new int[7];

 a[4]=30/0;

 System.out.println("First print statement in try block");

 }

 catch(ArithmeticException e){ System.out.println("Warning: ArithmeticException"); }

 catch(ArrayIndexOutOfBoundsException e){ System.out.println("Warning:
ArrayIndexOutOfBoundsException");}

 catch(Exception e){ System.out.println("Warning: Some Other exception");}

 System.out.println("Out of try-catch block...");}}

Prof. Tulasi Prasad Sariki
15

Finally block

● A finally block contains all the crucial statements that
must be executed whether exception occurs or not.

● The statements present in this block will always execute
regardless of whether exception occurs in try block or not
such as closing a connection, stream etc.

try { //Statements that may cause an exception }

catch { //Handling exception }

finally { //Statements to be executed }

Prof. Tulasi Prasad Sariki
16

Example

class Example

{

 public static void main(String args[]) {

 try{

 int num=121/0;

 System.out.println(num); }

catch(ArithmeticException e){ System.out.println("Number should
not be divided by zero"); }

 finally{ System.out.println("This is finally block"); }

 System.out.println("Out of try-catch-finally"); } }

Prof. Tulasi Prasad Sariki
17

Finally block

● A finally block must be associated with a try block, you cannot use finally
without a try block.

● You should place those statements in this block that must be executed
always.

● Finally block is optional, a try-catch block is sufficient for exception
handling, however if you place a finally block then it will always run after
the execution of try block.

● In normal case when there is no exception in try block then the finally
block is executed after try block.

● An exception in the finally block, behaves exactly like any other exception.
● The statements present in the finally block execute even if the try block

contains control transfer statements like return, break or continue.

Prof. Tulasi Prasad Sariki
18

Flow control in try catch finally

Control flow occurs in each of the given case
● Control flow in try-catch clause OR try-catch-finally clause

– Case 1: Exception occurs in try block and handled in catch block
– Case 2: Exception occurs in try-block is not handled in catch block
– Case 3: Exception doesn’t occur in try-block

● try-finally clause
– Case 1: Exception occurs in try block
– Case 2: Exception doesn’t occur in try-block

Prof. Tulasi Prasad Sariki
19

Nested try catch block in Java

● When a try catch block is present in another try block then it is
called the nested try catch block.

● Each time a try block does not have a catch handler for a
particular exception, then the catch blocks of parent try block
are inspected for that exception, if match is found that that
catch block executes.

● If neither catch block nor parent catch block handles exception
then the system generated message would be shown for the
exception.

Prof. Tulasi Prasad Sariki
20

Syntax of Nested try Catch

try { statement 1; statement 2;

 //try-catch block inside another try block

 try { statement 3; statement 4;

 //try-catch block inside nested try block

 try { statement 5; statement 6; }

 catch(Exception e2) { //Exception Message } }

 catch(Exception e1) { //Exception Message} }

//Catch of Main(parent) try block

catch(Exception e3) { //Exception Message }

Prof. Tulasi Prasad Sariki
21

User defined exceptions

● We can define our own set of conditions or rules and throw an
exception explicitly using throw keyword.

● For example, we can throw ArithmeticException when we divide
number by 5, or any other numbers, what we need to do is just
set the condition and throw any exception using throw keyword.

● Syntax of throw keyword:

– throw new exception_class("error message");
● Example:

– throw new ArithmeticException("dividing a number by 5 is not
allowed in this program");

Prof. Tulasi Prasad Sariki
22

Example

public class ThrowExampleDemo

{ static void checkEligibilty(int grescore) {

 if(grescore<315) { throw new ArithmeticException("Student is
not eligible for Admission"); }

 else {System.out.println("Student Entry is Valid!!"); } }

 public static void main(String args[]){

 System.out.println("Welcome to the Admission process!!");

 checkEligibilty(300);

 System.out.println("Have a nice day.."); } }

Prof. Tulasi Prasad Sariki
23

Example

class MyException extends Exception

{ public MyException(String s) { super(s); } }

public class ThrowExampleDemo1

{ void checkEligibilty(int grescore) throws MyException{

if(grescore<315){ throw new MyException("Student is not eligible for Admission"); } }

 public static void main(String args[])

 { ThrowExampleDemo1 obj = new ThrowExampleDemo1();

 try { obj.checkEligibilty(60); }

 catch (MyException me)

 { System.out.println("Caught the exception");

 System.out.println(me.getMessage()); } } }

Prof. Tulasi Prasad Sariki
24

Multithreading

● Multithreading refers to two or more tasks executing
concurrently within a single program.

● A thread is an independent(sequential) path of execution
within a program.

● Many threads can run concurrently within a program.
● Every thread in Java is created and controlled by the

java.lang.Thread class.
● A Java program can have many threads, and these threads can

run concurrently, either asynchronously or synchronously.

Prof. Tulasi Prasad Sariki
25

Advantages with Multithreading

● Multithreading has several advantages over Multiprocessing
– Threads are lightweight compared to processes
– Threads share the same address space and therefore can

share both data and code
– Context switching between threads is usually less expensive

than between processes
– Cost of thread intercommunication is relatively low that that

of process intercommunication
– Threads allow different tasks to be performed concurrently.

Prof. Tulasi Prasad Sariki
26

Thread Life Cycle (Thread States)

● The life cycle of the thread in java is controlled by
JVM.

● The java thread states are as follows
– New
– Runnable
– Running
– Non-Runnable (Blocked)
– Terminated

Prof. Tulasi Prasad Sariki
27

Thread Life Cycle (Thread States)

Prof. Tulasi Prasad Sariki
28

Thread Life Cycle (Thread States)

1) New
– The thread is in new state if you create an instance of Thread class but before the

invocation of start() method.

2) Runnable
– The thread is in runnable state after invocation of start() method, but the thread

scheduler has not selected it to be the running thread.

3) Running
– The thread is in running state if the thread scheduler has selected it.

4) Non-Runnable (Blocked)
– This is the state when the thread is still alive, but is currently not eligible to run.

5) Terminated
– A thread is in terminated or dead state when its run() method exits.

Prof. Tulasi Prasad Sariki
29

Thread Creation

● There are two ways to create thread in java
– Implement the Runnable interface (java.lang.Runnable)
– By Extending the Thread class (java.lang.Thread)

● Thread class
– Thread class provide constructors and methods to create

and perform operations on a thread.
– Thread class extends Object class and implements

Runnable interface.

Prof. Tulasi Prasad Sariki
30

Thread Class

● Commonly used Constructors of Thread class
– Thread()
– Thread(String name)
– Thread(Runnable r)
– Thread(Runnable r,String name)
– Thread(ThreadGroup group, Runnable r)
– Thread(ThreadGroup group, Runnable r, String name)
– Thread(ThreadGroup group, Runnable r, String name, long stackSize)
– Thread(ThreadGroup group, String name)

Prof. Tulasi Prasad Sariki
31

Thread Class

● Commonly used Methods of Thread class
– public void run(): is used to perform action for a thread.
– public void start(): starts the execution of the thread.JVM calls the run() method

on the thread.
– public void sleep(long miliseconds): Causes the currently executing thread to

sleep (temporarily cease execution) for the specified number of milliseconds.
– public void join(): waits for a thread to die.
– public void join(long miliseconds): waits for a thread to die for the specified

miliseconds.
– public int getPriority(): returns the priority of the thread.
– public int setPriority(int priority): changes the priority of the thread.
– public String getName(): returns the name of the thread.

Prof. Tulasi Prasad Sariki
32

Thread Class

● Commonly used Methods of Thread class.

– public void setName(String name): changes the name of the thread.
– public Thread currentThread(): returns the reference of currently

executing thread.
– public int getId(): returns the id of the thread.
– public Thread.State getState(): returns the state of the thread.
– public boolean isAlive(): tests if the thread is alive.
– public void yield(): causes the currently executing thread object to

temporarily pause and allow other threads to execute.
– public void suspend(): is used to suspend the thread(depricated).

Prof. Tulasi Prasad Sariki
33

Thread Class

● Commonly used Methods of Thread class.

– public void resume(): is used to resume the suspended
thread(depricated).

– public void stop(): is used to stop the thread(depricated).
– public boolean isDaemon(): tests if the thread is a daemon thread.
– public void setDaemon(boolean b): marks the thread as daemon or user

thread.
– public void interrupt(): interrupts the thread.
– public boolean isInterrupted(): tests if the thread has been interrupted.
– public static boolean interrupted(): tests if the current thread has been

interrupted.

Prof. Tulasi Prasad Sariki
34

Extending a Thread Class

● A class extending the Thread class overrides the
run() method from the Thread class to define the
code executed by the thread.

● This subclass may call a Thread constructor
explicitly in its constructors to initialize the thread,
using the super() call.

● The start() method inherited from the Thread class
is invoked on the object of the class to make the
thread eligible for running.

Prof. Tulasi Prasad Sariki
35

Example

class MyThread extends Thread {

MyThread() { }

MyThread(String threadName)

{ super(threadName); // Initialize thread.

System.out.println(this);

start(); }

public void run()

{ //Display info about this particular thread

System.out.println(Thread.currentThread().getName()); } }

Prof. Tulasi Prasad Sariki
36

Example

public class ThreadExample {

public static void main(String[] args) {

Thread thread1 = new Thread(new MyThread(), "thread1");

Thread thread2 = new Thread(new MyThread(), "thread2");

//The below 2 threads are assigned default names

Thread thread3 = new MyThread(); Thread thread4 = new MyThread();

Thread thread5 = new MyThread("thread5");

//Start the threads

thread1.start(); thread2.start();

thread3.start(); thread4.start();

try

{ Thread.currentThread().sleep(1000); } catch (InterruptedException e) { }

//Display info about the main thread

Thread.currentThread().setPriority(6);

System.out.println(Thread.currentThread()); } }

Thread[thread5,5,main]
thread5
thread1
Thread-2
thread2
Thread-3
Thread[main,6,main]

Prof. Tulasi Prasad Sariki
37

Runnable interface

● The Runnable interface should be implemented by any class
whose instances are intended to be executed by a thread.

● Runnable interface have only one method named run().
– public void run(): is used to perform action for a thread.

● Synatx
public class MyRunnable implements Runnable

{

 public void run(){ System.out.println("MyRunnable running"); }

}

Prof. Tulasi Prasad Sariki
38

Implementing a Runnable interface

● A class implements the Runnable interface, providing the run()
method that will be executed by the thread. An object of this
class is a Runnable object.

● An object of Thread class is created by passing a Runnable object
as argument to the Thread constructor. The Thread object now
has a Runnable object that implements the run() method.

● The start() method is invoked on the Thread object created in
the previous step. The start() method returns immediately after
a thread has been spawned.

● The thread ends when the run() method ends, either by normal
completion or by throwing an uncaught exception.

Prof. Tulasi Prasad Sariki
39

Example

● class RunnableThread implements Runnable {
● Thread runner;
● public RunnableThread() { }
● public RunnableThread(String threadName) {
● runner = new Thread(this, threadName); // (1) Create a new thread.
● System.out.println(runner.getName());
● runner.start(); // (2) Start the thread. }
● public void run() {//Display info about this particular thread
● System.out.println(Thread.currentThread().getName()); } }

Prof. Tulasi Prasad Sariki
40

Example

public class RunnableExample {

public static void main(String[] args) {

Thread thread1 = new Thread(new RunnableThread(), "thread1");

Thread thread2 = new Thread(new RunnableThread(), "thread2");

RunnableThread thread3 = new RunnableThread("thread3");

//Start the threads

thread1.start(); thread2.start();

try { Thread.currentThread().sleep(1000); }

catch (InterruptedException e) { }

//Display info about the main thread

Thread.currentThread().setPriority(3);

System.out.println(Thread.currentThread()); } }

thread3
thread3
thread1
thread2
Thread[main,3,main]

Prof. Tulasi Prasad Sariki
41

Thread Scheduler

● Thread scheduler in java is the part of the JVM that decides which
thread should run.

● There is no guarantee that which runnable thread will be chosen to
run by the thread scheduler.

● Only one thread at a time can run in a single process.
● The thread scheduler mainly uses preemptive or time slicing

scheduling to schedule the threads.
– Under preemptive scheduling, the highest priority task executes until it enters

the waiting or dead states or a higher priority task comes into existence.
– Under time slicing, a task executes for a predefined slice of time and then

reenters the pool of ready tasks. The scheduler then determines which task
should execute next, based on priority and other factors.

Prof. Tulasi Prasad Sariki
42

Multithreading in Java

● Multithreading in java is a process of executing
multiple threads simultaneously.

● Threads use a shared memory area. They don't
allocate separate memory area so saves memory,
and context-switching between the threads takes
less time than process.

● Java Multithreading is mostly used in games,
animation, etc.

Prof. Tulasi Prasad Sariki
43

Multithreading in Java

● Advantages of Java Multithreading
– 1) It doesn't block the user because threads are

independent and you can perform multiple operations at
the same time.

– 2) You can perform many operations together, so it saves
time.

– 3) Threads are independent, so it doesn't affect other
threads if an exception occurs in a single thread.

Prof. Tulasi Prasad Sariki
44

Example with Sleep Method

class MultiThreadDemo extends Thread

 {

 public void run()

 { for(int i=1;i<5;i++)

 {

 try{Thread.sleep(500);}

 catch(InterruptedException e)

 { System.out.println(e); }

 System.out.println(i);

 } }

 public static void main(String args[])

 {

 MultithreadDemo t1=new
MultithreadDemo();

 MultithreadDemo t2=new
MultithreadDemo();

 t1.start();

 t2.start();

 }

 }

Prof. Tulasi Prasad Sariki
45

Example without Start Method

class NoMultiThreadDemo extends Thread{

 public void run(){

 for(int i=1;i<5;i++){

 try{Thread.sleep(500);}catch(InterruptedException e)

 {System.out.println(e);}

 System.out.println(this.getName()+" "+i); } }

 public static void main(String args[]){

 NoMultiThreadDemo t1=new NoMultiThreadDemo();

 NoMultiThreadDemo t2=new NoMultiThreadDemo();

 t1.run(); t2.run();

 } }

Prof. Tulasi Prasad Sariki
46

Thread Synchronization

● There are two types of thread synchronization mutual
exclusive and inter-thread communication.

1. Mutual Exclusive
– Synchronized method.
– Synchronized block.
– static synchronization.

2.Cooperation (Inter-thread communication in java)

Prof. Tulasi Prasad Sariki
47

Mutual Exclusive

● Mutual Exclusive helps keep threads from
interfering with one another while sharing data.

● This can be done by three ways in java:
– by synchronized method
– by synchronized block
– by static synchronization

Prof. Tulasi Prasad Sariki
48

Concept of Lock in Java

● Synchronization is built around an internal entity
known as the lock or monitor.

● Every object has an lock associated with it.
● By convention, a thread that needs consistent

access to an object's fields has to acquire the
object's lock before accessing them, and then
release the lock when it's done with them.

Prof. Tulasi Prasad Sariki
49

Usage of Synchronized

 class Table{

 void printTable(int n){

 for(int i=1;i<=5;i++){

 System.out.println(n+" X "+i+" = "+n*i);

 try{ Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 } } }

 class MyThread1 extends Thread{

 Table t;

 MyThread1(Table t){

 this.t=t; }

 public void run(){

 t.printTable(5); } }

 class MyThread2 extends Thread{

 Table t;

 MyThread2(Table t){

 this.t=t;

 }

 public void run(){ t.printTable(100); } }

 class ThreadSynchronizationDemo{

 public static void main(String args[]){

 Table obj = new Table();//only one object

 MyThread1 t1=new MyThread1(obj);

 MyThread2 t2=new MyThread2(obj);

 t1.start();

 t2.start(); } }

Prof. Tulasi Prasad Sariki
50

Synchronized block in java

● Synchronized block can be used to perform synchronization
on any specific resource of the method.

● Suppose you have 50 lines of code in your method, but you
want to synchronize only 5 lines, you can use synchronized
block.

● If you put all the codes of the method in the synchronized
block, it will work same as the synchronized method.

● Points to remember for Synchronized block
– Synchronized block is used to lock an object for any shared resource.
– Scope of synchronized block is smaller than the method.

Prof. Tulasi Prasad Sariki
51

Synchronized block in java

● Syntax to use synchronized block
synchronized (object reference expression)

{

 //code block

 }
– In the above example by adding the following one we can

make it synchronized.
● synchronized(this)

Prof. Tulasi Prasad Sariki
52

Static synchronization

● If you make any static method as synchronized, the lock will be
on the class not on object.

● Suppose there are two objects of a shared class(e.g. Table)
named object1 and object2.

● In case of synchronized method and synchronized block there
cannot be interference between t1 and t2 or t3 and t4 because t1
and t2 both refers to a common object that have a single lock.

● But there can be interference between t1 and t3 or t2 and t4
because t1 acquires another lock and t3 acquires another lock.

● If you want no interference between t1 and t3 or t2 and t4 then
Static synchronization solves this problem.

Prof. Tulasi Prasad Sariki
53

Deadlock in java

● Deadlock can occur in a situation when a thread is waiting
for an object lock, that is acquired by another thread and
second thread is waiting for an object lock that is acquired
by first thread. Since, both threads are waiting for each
other to release the lock, the condition is called deadlock.

Prof. Tulasi Prasad Sariki
54

Example

public class ThreadDeadlockDemo {

 public static void main(String[] args) {

 final String resource1 = "Machine Learning"; final String resource2 = "Deep Learning";

 // t1 tries to lock resource1 then resource2

 Thread t1 = new Thread() {

 public void run() {

 synchronized (resource1) {

 System.out.println("Thread 1: locked resource 1");

 try { Thread.sleep(100);} catch (Exception e) {}

 synchronized (resource2) {

 System.out.println("Thread 1: locked resource 2"); } } } };

 Thread t2 = new Thread() {

 public void run() {

 synchronized (resource2) {

 System.out.println("Thread 2: locked resource 2");

 try { Thread.sleep(100);} catch (Exception e) {}

 synchronized (resource1) {

 System.out.println("Thread 2: locked resource 1"); } } } };

 t1.start(); t2.start(); }}

Prof. Tulasi Prasad Sariki
55

Inter-thread communication in Java

● Inter-thread communication or Co-operation is all about
allowing synchronized threads to communicate with each other.

● Cooperation (Inter-thread communication) is a mechanism in
which a thread is paused running in its critical section and
another thread is allowed to enter (or lock) in the same critical
section to be executed.

● It is implemented by following methods of Object class:
– wait()
– notify()
– notifyAll()

Prof. Tulasi Prasad Sariki
56

Inter-thread communication in Java

● The Object class in Java has three final methods that allow
threads to communicate about the locked status of a
resource.

1. Wait
● It tells the calling thread to give up the lock and go to sleep

until some other thread enters the same monitor and calls
notify().

● The wait() method is actually tightly integrated with the
synchronization lock,

Prof. Tulasi Prasad Sariki
57

Inter-thread communication in Java

● General Syntax of wait method

synchronized(lockObject)
{
 while(! condition)
 {
 lockObject.wait();
 }
}

Prof. Tulasi Prasad Sariki
58

Inter-thread communication in Java

2. notify()
● It wakes up one single thread that called wait() on the same object.
● It should be noted that calling notify() does not actually give up a

lock on a resource. It tells a waiting thread that can wake up.
● However, the lock is not actually given up until the notifier’s

synchronized block has completed.
● So, if a notifier calls notify() on a resource but the notifier still needs

to perform 10 seconds of actions on the resource within its
synchronized block, the thread that had been waiting will need to
wait at least another additional 10 seconds for the notifier to release
the lock on the object, even though notify() had been called.

Prof. Tulasi Prasad Sariki
59

Inter-thread communication in Java

● General syntax for calling notify() method is like this:

synchronized(lockObject)

{

 //establish_the_condition;

 lockObject.notify();

 //any additional code if needed

}

Prof. Tulasi Prasad Sariki
60

Inter-thread communication in Java

● 3. notifyAll()
● It wakes up all the threads that called wait() on the same object. The

highest priority thread will run first in most of the situation, though
not guaranteed. Other things are same as notify() method .

● General syntax for calling notify() method is like this:

synchronized(lockObject)

{

 //establish_the_condition;

 lockObject.notifyAll();

}

Prof. Tulasi Prasad Sariki
61

Inter-thread communication in Java

● Producer-Consumer Problem
– Producer thread produce a new resource in every 1

second and put it in ‘taskQueue’.
– Consumer thread takes 1 seconds to process consumed

resource from ‘taskQueue’.
– Max capacity of taskQueue is 5 i.e. maximum 5 resources

can exist inside ‘taskQueue’ at any given time.
– Both threads run infinitely.

Prof. Tulasi Prasad Sariki
62

Inter-thread communication in Java

Prof. Tulasi Prasad Sariki
63

Inter-thread communication in Java

wait() sleep()
wait() method releases the lock sleep() method doesn't release

the lock

is the method of Object class is the method of Thread class

is the non-static method is the static method

should be notified by notify() or
notifyAll() methods

after the specified amount of
time, sleep is completed.

Prof. Tulasi Prasad Sariki
64

References

● https://docs.oracle.com/javase/tutorial/

● https://www.javatpoint.com/features-of-java

● http://www.java2novice.com/java-fundamentals/

● http://archive.oreilly.com/oreillyschool/courses/java2/

● https://docs.oracle.com/javase/7/docs/api/

● https://www.javatpoint.com/

● https://beginnersbook.com/java-tutorial-for-beginners-with-examples/

● https://www.javaworld.com/

● https://www.geeksforgeeks.org/

https://docs.oracle.com/javase/tutorial/
https://www.javatpoint.com/features-of-java
http://www.java2novice.com/java-fundamentals/
http://archive.oreilly.com/oreillyschool/courses/java2/
https://docs.oracle.com/javase/7/docs/api/
https://www.javatpoint.com/
https://beginnersbook.com/java-tutorial-for-beginners-with-examples/
https://www.javaworld.com/
https://www.geeksforgeeks.org/

Prof. Tulasi Prasad Sariki
65

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

