
CSE1007
Java Programming

Prof. Tulasi Prasad Sariki
SCSE, VIT, Chennai

www.learnersdesk.weebly.com

Slot: A2+TA2 Venue: AB1-409
Module -IV Streams & I/O Collections

http://www.learnersdesk.weebly.com/

Prof. Tulasi Prasad Sariki
2

Course Contents:

● Java I/O streams
● Working with files
● Serialization and deserialization
● Lambda expressions
● Collection framework

– List
– Map
– Set

Prof. Tulasi Prasad Sariki
3

Java I/O

● Java I/O (Input and Output) is used to process the input
and produce the output.

● Java uses the concept of a stream to make I/O operation
fast.

● A stream is an abstraction that either produce or consumes
information

● Streams are implemented in the java.io and java.nio
packages

● Predefined stream: the java.lang.System class

Prof. Tulasi Prasad Sariki
4

Stream

● A stream is a sequence of data. In Java, a stream is composed of bytes. It's
called a stream because it is like a stream of water that continues to flow.

● In Java, 3 streams are created for us automatically. All these streams are
attached with the console.

1) System.out: standard output stream

2) System.in: standard input stream

3) System.err: standard error stream

 System.out.println("simple message");

 System.err.println("error message");

 int i=System.in.read();//returns ASCII code of 1st character

 System.out.println((char)i);//will print the character

Prof. Tulasi Prasad Sariki
5

I/O streams

● OutputStream: Java application uses an output stream to
write data to a destination; it may be a file, an array,
peripheral device or socket.

● InputStream: Java application uses an input stream to
read data from a source; it may be a file, an array,
peripheral device or socket.

Prof. Tulasi Prasad Sariki
6

OutputStream class

● OutputStream class is an abstract class.
● It is the superclass of all classes representing an output stream of bytes.
● An output stream accepts output bytes and sends them to some sink.
● Useful Methods of OutputStream class

1) public void write(int)throws IOException is used to write a byte to the
current output stream.

2) public void write(byte[])throws IOException is used to write an array of
byte to the current output stream.

3) public void flush()throws IOException flushes the current output stream.

4) public void close()throws IOException is used to close the current output
stream.

Prof. Tulasi Prasad Sariki
7

OutputStream Hierarchy

Prof. Tulasi Prasad Sariki
8

InputStream class

● InputStream class is an abstract class. It is the superclass of all
classes representing an input stream of bytes.

● Useful methods of InputStream class
● 1) public abstract int read()throws IOException reads the next

byte of data from the input stream. It returns -1 at the end of the
file.

● 2) public int available()throws IOException returns an estimate
of the number of bytes that can be read from the current input
stream.

● 3) public void close()throws IOException is used to close the
current input stream.

Prof. Tulasi Prasad Sariki
9

InputStream Hierarchy

Prof. Tulasi Prasad Sariki
10

Java FileOutputStream Class

● Java FileOutputStream is an output stream used for writing
data to a file.

● If you have to write primitive values into a file, use
FileOutputStream class.

● You can write byte-oriented as well as character-oriented
data through FileOutputStream class.

● But, for character-oriented data, it is preferred to use
FileWriter than FileOutputStream.

● Synatx:
– public class FileOutputStream extends OutputStream

Prof. Tulasi Prasad Sariki
11

FileOutputStream class methods

protected void finalize() It is used to clean up the connection with the file
output stream.

void write(byte[] ary) It is used to write ary.length bytes from the byte array
to the file output stream.

void write(byte[] ary, int off, int len) It is used to write len bytes from the byte
array starting at offset off to the file output stream.

void write(int b) It is used to write the specified byte to the file output stream.

FileChannel getChannel() It is used to return the file channel object associated
with the file output stream.

FileDescriptor getFD() It is used to return the file descriptor associated with
the stream.

void close() It is used to closes the file output stream.

Prof. Tulasi Prasad Sariki
12

Example 1: write byte

 import java.io.FileOutputStream;

 public class FileOutputStreamExample {

 public static void main(String args[]){

 try{

 FileOutputStream fout=new FileOutputStream("D:\\testout.txt");

 fout.write(65);

 fout.close();

 System.out.println("success...");

 }catch(Exception e){System.out.println(e);}

 }

 }

Prof. Tulasi Prasad Sariki
13

Example 2: write string

 import java.io.FileOutputStream;

 public class FileOutputStreamExample1 {

 public static void main(String args[]){

 try{

 FileOutputStream fout=new FileOutputStream("/home/rohan/testout1.txt");

 String s="Welcome to java.";

 byte b[]=s.getBytes();//converting string into byte array

 fout.write(b);

 fout.close();

 System.out.println("success...");

 }catch(Exception e){System.out.println(e);}

 } }

Prof. Tulasi Prasad Sariki
14

Java FileInputStream Class

● Java FileInputStream class obtains input bytes from a file.
● It is used for reading byte-oriented data (streams of raw

bytes) such as image data, audio, video etc. You can also
read character-stream data.

● But, for reading streams of characters, it is recommended
to use FileReader class.

● Java FileInputStream class declaration
– public class FileInputStream extends InputStream

Prof. Tulasi Prasad Sariki
15

FileInputStream class methods

int available() It is used to return the estimated number of bytes that can be read from the
input stream.

int read() It is used to read the byte of data from the input stream.

int read(byte[] b) It is used to read up to b.length bytes of data from the input stream.

int read(byte[] b, int off, int len) It is used to read up to len bytes of data from the input
stream.

long skip(long x) It is used to skip over and discards x bytes of data from the input stream.

FileChannel getChannel() It is used to return the unique FileChannel object associated with
the file input stream.

FileDescriptor getFD() It is used to return the FileDescriptor object.

protected void finalize() It is used to ensure that the close method is call when there is no
more reference to the file input stream.

void close() It is used to closes the stream.

Prof. Tulasi Prasad Sariki
16

Example 1: read single character

 import java.io.FileInputStream;

 public class FileInputStreamExample {

 public static void main(String args[]){

 try{

 FileInputStream fin=new FileInputStream("./testout.txt");

 int i=fin.read();

 System.out.println((char)i);

 fin.close();

 }catch(Exception e){System.out.println(e);}

 }

 }

Prof. Tulasi Prasad Sariki
17

Example 2: read all characters

 import java.io.FileInputStream;

 public class FileInputStreamExample1 {

 public static void main(String args[]){

 try{

 FileInputStream fin=new FileInputStream("./testout1.txt");

 int i=0;

 while((i=fin.read())!=-1){

 System.out.print((char)i);

 }

 fin.close();

 }catch(Exception e){System.out.println(e);}

 } }

Prof. Tulasi Prasad Sariki
18

Java BufferedOutputStream Class

● Java BufferedOutputStream class is used for buffering an
output stream. It internally uses buffer to store data. It adds
more efficiency than to write data directly into a stream. So, it
makes the performance fast.

● For adding the buffer in an OutputStream, use the
BufferedOutputStream class.
– OutputStream os = new BufferedOutputStream(new

FileOutputStream("./testout.txt"));
● Java BufferedOutputStream class declaration
● public class BufferedOutputStream extends

FilterOutputStream

Prof. Tulasi Prasad Sariki
19

BufferedOutputStream constructors & methods

Constructors:
BufferedOutputStream(OutputStream os) It creates the new buffered output
stream which is used for writing the data to the specified output stream.

BufferedOutputStream(OutputStream os, int size) It creates the new
buffered output stream which is used for writing the data to the specified
output stream with a specified buffer size.

Methods:
void write(int b) It writes the specified byte to the buffered output stream.

void write(byte[] b, int off, int len) It write the bytes from the specified byte-
input stream into a specified byte array, starting with the given offset

void flush() It flushes the buffered output stream.

Prof. Tulasi Prasad Sariki
20

Example

import java.io.*;
public class BufferedOutputStreamExample{
public static void main(String args[])throws Exception{
FileOutputStream fout=new FileOutputStream("./testout.txt");
BufferedOutputStream bout=new BufferedOutputStream(fout);
String s="Welcome to VIT";
byte b[]=s.getBytes();
bout.write(b);
bout.flush();
bout.close();
 fout.close();
System.out.println("success");
 } }

Prof. Tulasi Prasad Sariki
21

Java BufferedInputStream Class

● Java BufferedInputStream class is used to read information from
stream.

● It internally uses buffer mechanism to make the performance fast.
● When the bytes from the stream are skipped or read, the internal

buffer automatically refilled from the contained input stream,
many bytes at a time.

● When a BufferedInputStream is created, an internal buffer array is
created.

● Java BufferedInputStream class declaration
– public class BufferedInputStream extends FilterInputStream

Prof. Tulasi Prasad Sariki
22

BufferedInputStream constructors

BufferedInputStream(InputStream IS)

It creates the BufferedInputStream and saves it argument,
the input stream IS, for later use.

BufferedInputStream(InputStream IS, int size)

It creates the BufferedInputStream with a specified buffer
size and saves it argument, the input stream IS, for later use.

Prof. Tulasi Prasad Sariki
23

BufferedInputStream methods

● int available() It returns an estimate number of bytes that can be read from the input
stream without blocking by the next invocation method for the input stream.

● int read() It read the next byte of data from the input stream.
● int read(byte[] b, int off, int ln) It read the bytes from the specified byte-input stream

into a specified byte array, starting with the given offset.
● void close() It closes the input stream and releases any of the system resources

associated with the stream.
● void reset() It repositions the stream at a position the mark method was last called on

this input stream.
● void mark(int readlimit) It sees the general contract of the mark method for the input

stream.
● long skip(long x) It skips over and discards x bytes of data from the input stream.
● boolean markSupported() It tests for the input stream to support the mark and reset

methods.

Prof. Tulasi Prasad Sariki
24

Example

import java.io.*;

public class BufferedInputStreamExample{

 public static void main(String args[]){

 try{

 FileInputStream fin=new FileInputStream("./testout.txt");

 BufferedInputStream bin=new BufferedInputStream(fin);

 int i;

 while((i=bin.read())!=-1){ System.out.print((char)i); }

 bin.close();

 fin.close();

 }catch(Exception e){System.out.println(e); } } }

Prof. Tulasi Prasad Sariki
25

Java PrintStream Class

● The PrintStream class provides methods to write data to
another stream. The PrintStream class automatically
flushes the data so there is no need to call flush() method.
Moreover, its methods don't throw IOException.

● Class declaration
– public class PrintStream extends FilterOutputStream

implements Closeable. Appendable

Prof. Tulasi Prasad Sariki
26

Methods of PrintStream class

●

●

●

●

●

●

● void print(boolean b) It prints the specified boolean value.
● void print(char c) It prints the specified char value.
● void print(char[] c) It prints the specified character array values.
● void print(int I) It prints the specified int value.
● void print(long l) It prints the specified long value.
● void print(float f) It prints the specified float value.
● void print(double d) It prints the specified double value.
● void print(String s) It prints the specified string value.
● void print(Object obj) It prints the specified object value.

https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/java-string

Prof. Tulasi Prasad Sariki
27

Methods of PrintStream class

● void println(boolean b) It prints the specified boolean value and terminates
the line

● void println(char c) It prints the specified char value and terminates the line.
● void println(char[] c) It prints the specified character array values and

terminates the line.
● void println(int I) It prints the specified int value and terminates the line.
● void println(long l) It prints the specified long value and terminates the line.
● void println(float f) It prints the specified float value and terminates the line.
● void println(double d) It prints the specified double value and terminates the

line.
● void println(String s) It prints the specified string value and terminates the

line.

Prof. Tulasi Prasad Sariki
28

Methods of PrintStream class

● void println(Object obj It prints the specified object value and terminates
the line.

● void println() It terminates the line only.
● void printf(Object format, Object... args) It writes the formatted string to

the current stream.
● void printf(Locale l, Object format, Object... args) It writes the formatted

string to the current stream.
● void format(Object format, Object... args) It writes the formatted string to

the current stream using specified format.
● void format(Locale l, Object format, Object... args) It writes the formatted

string to the current stream using specified format.

Prof. Tulasi Prasad Sariki
29

File Class in Java

● The File class is Java’s representation of a file or
directory path name.

● Because file and directory names have different formats
on different platforms, a simple string is not adequate
to name them.

● The File class contains several methods for
– working with the path name
– deleting and renaming files
– creating new directories
– listing the contents of a directory
– determining several common attributes of files and directories.

Prof. Tulasi Prasad Sariki
30

File Class in Java

● It is an abstract representation of file and directory pathnames.
● A pathname, whether abstract or in string form can be either

absolute or relative. The parent of an abstract pathname may be
obtained by invoking the getParent() method of this class.

● We can create the File class object by passing the filename or
directory name to it. A file system may implement restrictions
(access permissions) to certain operations on the actual file-
system object, such as reading, writing, and executing.

● Instances of the File class are immutable; that is, once created,
the abstract pathname represented by a File object will never
change.

Prof. Tulasi Prasad Sariki
31

Creating a File Object?

● A File object is created by passing a String that represents
the name of a file, or another File object. For example,
– File a = new File("/home/rohan/test");

● defines an abstract file name for the test file in directory
/home/rohan. This is an absolute abstract file name.

Prof. Tulasi Prasad Sariki
32

Constructors

● File(File parent, String child) : Creates a new File instance
from a parent abstract pathname and a child pathname
string.

● File(String pathname) : Creates a new File instance by
converting the given pathname string into an abstract
pathname.

● File(String parent, String child) : Creates a new File instance
from a parent pathname string and a child pathname string.

● File(URI uri) : Creates a new File instance by converting the
given file: URI into an abstract pathname

Prof. Tulasi Prasad Sariki
33

Methods

● boolean canExecute() : Tests whether the application can
execute the file denoted by this abstract pathname.

● boolean canRead() : Tests whether the application can read
the file denoted by this abstract pathname.

● boolean canWrite() : Tests whether the application can
modify the file denoted by this abstract pathname.

● int compareTo(File pathname) : Compares two abstract
pathnames lexicographically.

● boolean createNewFile() : Atomically creates a new, empty
file named by this abstract pathname .

Prof. Tulasi Prasad Sariki
34

Methods

● static File createTempFile(String prefix, String suffix) :
Creates an empty file in the default temporary-file directory.

● boolean delete() : Deletes the file or directory denoted by
this abstract pathname.

● boolean equals(Object obj) : Tests this abstract pathname
for equality with the given object.

● boolean exists() : Tests whether the file or directory denoted
by this abstract pathname exists.

● String getAbsolutePath() : Returns the absolute pathname
string of this abstract pathname.

Prof. Tulasi Prasad Sariki
35

Methods

● long getFreeSpace() : Returns the number of unallocated
bytes in the partition .

● String getName() : Returns the name of the file or directory
denoted by this abstract pathname.

● String getParent() : Returns the pathname string of this
abstract pathname’s parent.

● File getParentFile() : Returns the abstract pathname of this
abstract pathname’s parent.

● String getPath() : Converts this abstract pathname into a
pathname string.

Prof. Tulasi Prasad Sariki
36

Methods

● boolean isDirectory() : Tests whether the file denoted by this
pathname is a directory.

● boolean isFile() : Tests whether the file denoted by this
abstract pathname is a normal file.

● boolean isHidden() : Tests whether the file named by this
abstract pathname is a hidden file.

● long length() : Returns the length of the file denoted by this
abstract pathname.

● String[] list() : Returns an array of strings naming the files
and directories in the directory .

Prof. Tulasi Prasad Sariki
37

Methods

● File[] listFiles() : Returns an array of abstract pathnames
denoting the files in the directory.

● boolean mkdir() : Creates the directory named by this
abstract pathname.

● boolean renameTo(File dest) : Renames the file denoted by
this abstract pathname.

● boolean setExecutable(boolean executable) : A convenience
method to set the owner’s execute permission.

● boolean setReadable(boolean readable) : A convenience
method to set the owner’s read permission.

Prof. Tulasi Prasad Sariki
38

Methods

● boolean setReadable(boolean readable, boolean ownerOnly) :
Sets the owner’s or everybody’s read permission.

● boolean setReadOnly() : Marks the file or directory named so
that only read operations are allowed.

● boolean setWritable(boolean writable) : A convenience
method to set the owner’s write permission.

● String toString() : Returns the pathname string of this abstract
pathname.

● URI toURI() : Constructs a file URI that represents this abstract
pathname.

Prof. Tulasi Prasad Sariki
39

Example

import java.io.File;
 class FileDemo {
 public static void main(String[] args) {
 String fname =args[0];
 File f = new File(fname);
 System.out.println("File name :"+f.getName());
 System.out.println("Path: "+f.getPath());
 System.out.println("Absolute path:" +f.getAbsolutePath());
 System.out.println("Parent:"+f.getParent());
 System.out.println("Exists :"+f.exists());
 if(f.exists()) {
 System.out.println("Is writeable:"+f.canWrite());
 System.out.println("Is readable"+f.canRead());
 System.out.println("Is a directory:"+f.isDirectory());
 System.out.println("File Size in bytes "+f.length());
 } } }

Prof. Tulasi Prasad Sariki
40

Collections in Java

● The Collection in Java is a framework that provides an
architecture to store and manipulate the group of objects.

● Java Collections can achieve all the operations that you
perform on a data such as searching, sorting, insertion,
manipulation, and deletion.

● The Java "Collection" classes make it easy to store and
manipulate collections of information.

● We should be familiar with the collection classes so we can
leverage their many built-in features in our own code.

Prof. Tulasi Prasad Sariki
41

Collections in Java

● The three most important types are "List", "Set", and "Map".

– A List is like an array, except it grows and shrinks
automatically as needed.

– The Set is like the List, but automatically rejects duplicate
elements.

– The Map is a key/value dictionary that supports the efficient
storage and retrieval of information by a key.

Prof. Tulasi Prasad Sariki
42

Hierarchy of Collection Framework

Prof. Tulasi Prasad Sariki
43

List, Set and Map

● The Collection interface is a general interface that includes sub-
interfaces List and Set.

● If a method has a parameter of type Collection, you can pass it a
List or Set and it will work fine.

● List is an interface, and ArrayList is the typically used class that
implements List.

● Set is an interface, and HashSet is the commonly used class that
implements Set.

● The Map interface is separate from the Collection interface. The
Map interface defines a key/value lookup dictionary, and
HashMap is the most commonly used Map.

Prof. Tulasi Prasad Sariki
44

Methods in the Collection interface

Prof. Tulasi Prasad Sariki
45

Lists

● The List is probably the single most useful and widely used type of
Collection.

● List is a general interface, and ArrayList and LinkedList are implementing
classes.

● ArrayList is the best general purpose List.
● A List is a linear structure where each element is known by an index number

0, 1, 2, ... len-1 (like an array).
● Lists can only store objects, like String and Integer, but not primitives like

int.
● You cannot create a List of int, but you can create a list of Integer objects.
● Another way to say this is that the collection classes can only store

pointers.

Prof. Tulasi Prasad Sariki
46

Basic List

● Here is code to create a new list to contain Strings:
● List<String> words = new ArrayList<String>();
● The "words" variable is declared to be type "List<String>" -- "List"

being the general interface for all lists, and the "<String>" is the
generic syntax means this is a list that contains String elements.

● On the right hand side the "new AarrayList<String>()" creates a new
ArrayList of Strings, also using the "List<String>" syntax.

● The ArrayList class implements the List interface, which is how we
can store a pointer to an ArrayList in a List variable.

● Using the general List type for the variable as shown here is the
standard way to store an ArrayList.

Prof. Tulasi Prasad Sariki
47

Basic List

List add()

A new ArrayList is empty. The add() method adds a single
element to the end of the list, like this:

words.add("this");

words.add("and");

words.add("that");

// words is now: {"this", "and", "that"}

words.size() // returns 3

The size() method returns the int size of a list (or any collection).

Prof. Tulasi Prasad Sariki
48

Basic List

● For all the collection classes, creating a new one with
the default constructor gives us an empty collection.

● However, we can also call the constructor passing an
existing collection argument, and this creates a new
collection that is a copy.

● // Create words2 which is a copy of words
● List<String> words2 = new ArrayList<String>(words);
● Note: this just copies the elements (pointers) that are

in "words" into "words2" .

Prof. Tulasi Prasad Sariki
49

Basic List

● List Foreach
● To iterates over all the elements in a list
● int lengthSum = 0;
● for (String str: words) {
● lengthSum += str.length();
● }
● Each time through the loop, the "str" variable above takes on the next String

element in the words list.
● It is not valid to modify (add or remove) elements from a list while a foreach is

iterating over that list, so it would be an error to put a words.add("hi") inside the
above loop.

● The foreach simply goes through the list once from start to finish, and "break" works
to exit the loop early.

Prof. Tulasi Prasad Sariki
50

Basic List

● List get()
● Is an other forms of iteration.
● The elements in a List are indexed 0..size-1, with the first element

at 0, the next at 1, the next at 2, and so on up through size-1.
● The get(int index) method returns an element by its index number:
● // suppose words is {"this", "and", "that"}
● words.get(0) // returns "this"
● words.get(2) // returns "that"
● words.get(3) // ERROR index out of bounds

Prof. Tulasi Prasad Sariki
51

Basic List

● List For Loop

for (int i=0; i<words.size(); i++) {

String str = words.get(i); // do something with str

}
● // iterate through the words backwards, skipping every other one

for (int i = words.size()-1; i >= 0; i = i-2) {

String str = words.get(i);

// do something with str

}

Prof. Tulasi Prasad Sariki
52

Basic List Methods

● Basic list methods that works to set/add/remove elements in a list using
index numbers to identify elements.

● get(int index) -- returns the element at the given index.
● set(int index, Object obj) -- sets the element at the given index in a list.
● set() does not change the length of the list, it just changes what element is

at an index.
● add(Object obj) -- adds a new element at the end of the list.
● add(int index, Object obj) -- adds a new element into the list at the given

index, shifting any existing elements at greater index positions over to make
a space.

● remove(int index) -- removes the element at the given index, shifting any
elements at greater index positions down to take up the space

Prof. Tulasi Prasad Sariki
53

Collection Utility Methods

● int size() -- number of elements in the collection
● boolean isEmpty() -- true if the collection is empty
● boolean contains(Object target) -- true if the collection contains the given

target element
● boolean containsAll(Collection coll) -- true if the collection contains all of

the elements
● in the given collection.
● void clear() -- removes all the elements in the collection, setting it back to

an empty state.
● boolean remove(Object target) -- searches for and removes the first

instance of the target if found. Returns true if an element is found and
removed.

Prof. Tulasi Prasad Sariki
54

Collection Utility Methods

● boolean removeAll(Collection coll) -- removes from the receiver collection all of
the elements which appear in the given collection (returns true if changed).

● boolean addAll(Collection coll) -- adds to the receiver collection all of the
elements in the given collection (returns true if changed).

● boolean retainAll(Collection coll) -- retains in the receiver collection only the
elements which also appear in the given collection.

● Object[] toArray() -- builds and returns an Object[] array containing the elements
from the collection.

● For List alone
● int indexOf(Object target) – returns the int index of the first appearance of target

in the list, or -1 if not found.
● List subList(int fromIndex, int toIndex) -- returns a new list that represents the

part of the original list between fromIndex up to but not including toIndex.

Prof. Tulasi Prasad Sariki
55

Serialization and Deserialization in Java

● Serialization in Java is a mechanism of writing the state of
an object into a byte stream.
– It is mainly used in Hibernate, RMI, JPA, EJB and JMS technologies.

● The reverse operation of serialization is called
deserialization.

● Advantages of Java Serialization
– It is mainly used to travel object's state on the network (which is

known as marshaling).
– To save/persist state of an object.

Prof. Tulasi Prasad Sariki
56

Serialization and Deserialization in Java

Prof. Tulasi Prasad Sariki
57

java.io.Serializable interface

● Serializable is a marker interface (has no data member
and method). It is used to "mark" Java classes so that
objects of these classes may get the certain capability.

● It must be implemented by the class whose object you
want to persist.

● The String class and all the wrapper classes
implement the java.io.Serializable interface by
default.

Prof. Tulasi Prasad Sariki
58

java.io.Serializable interface

● The ObjectOutputStream class contains writeObject()
method for serializing an Object.

public final void writeObject(Object obj)

 throws IOException
● The ObjectInputStream class contains readObject() method

for deserializing an object.

public final Object readObject()

 throws IOException,

 ClassNotFoundException

Prof. Tulasi Prasad Sariki
59

Points to remember

● 1. If a parent class has implemented Serializable interface then
child class doesn’t need to implement it but vice-versa is not true.

● 2. Only non-static data members are saved via Serialization
process.

● 3. Static data members and transient data members are not saved
via Serialization process. So, if you don’t want to save value of a
non-static data member then make it transient.

● 4. Constructor of object is never called when an object is
deserialized.

● 5. Associated objects must be implementing Serializable interface.

Prof. Tulasi Prasad Sariki
60

Example

import java.io.*;

class Emp implements Serializable {

 transient int a;

 transient String name;

 static int b;

 int age;

public Emp(String name, int age, int a, int b) {

 this.name = name;

 this.age = age;

 this.a = a;

 this.b = b; } }

Prof. Tulasi Prasad Sariki
61

Example

public class SerialDemo1{

public static void printdata(Emp object1) {

 System.out.println("name = " + object1.name);

 System.out.println("age = " + object1.age);

 System.out.println("a = " + object1.a);

 System.out.println("b = " + object1.b); }

public static void main(String[] args) {

 Emp object = new Emp("VIT", 20, 2, 1000);

 String filename = "cse1007.txt";

 try {

 FileOutputStream file = new FileOutputStream(filename);

 ObjectOutputStream out = new ObjectOutputStream(file);

Prof. Tulasi Prasad Sariki
62

Example

out.writeObject(object);

 out.close();

 file.close();

 System.out.println("Object has been serialized\n" + "Data before Deserialization.");

 printdata(object);

 object.b = 2000; }

 catch (IOException ex) { System.out.println("IOException is caught"); }

 object = null;

 try {

 FileInputStream file = new FileInputStream(filename);

 ObjectInputStream in = new ObjectInputStream(file);

 object = (Emp)in.readObject();

Prof. Tulasi Prasad Sariki
63

Example

 in.close();

 file.close();

 System.out.println("Object has been deserialized\n" + "Data after
Deserialization.");

 printdata(object);

 }

 catch (IOException ex) {

 System.out.println("IOException is caught");

 }

 catch (ClassNotFoundException ex) {

 System.out.println("ClassNotFoundException is caught");

 } } }

Prof. Tulasi Prasad Sariki
64

Java Lambda Expressions

● Lambda expression is a new and important feature of Java
which was included in Java SE 8. It provides a clear and concise
way to represent one method interface using an expression.

● It is very useful in collection library. It helps to iterate, filter
and extract data from collection.

● The Lambda expression is used to provide the implementation
of an interface which has functional interface. It saves a lot of
code. In case of lambda expression, we don't need to define
the method again for providing the implementation. Here, we
just write the implementation code.

Prof. Tulasi Prasad Sariki
65

Java Lambda Expressions

● Java lambda expression is treated as a function, so
compiler does not create .class file.

● Functional Interface
– Lambda expression provides implementation of

functional interface. An interface which has only one
abstract method is called functional interface. Java
provides an anotation @FunctionalInterface, which is
used to declare an interface as functional interface.

Prof. Tulasi Prasad Sariki
66

Java Lambda Expressions

● Why use Lambda Expression
– To provide the implementation of Functional interface.
– Less coding.

● Java Lambda Expression Syntax
– (argument-list) -> {body}

● Java lambda expression is consisted of three components.
– 1) Argument-list: It can be empty or non-empty as well.
– 2) Arrow-token: It is used to link arguments-list and body of expression.
– 3) Body: It contains expressions and statements for lambda expression.

Prof. Tulasi Prasad Sariki
67

Example

● interface Drawable{ public void draw(); }
● public class LambdaExpressionExample {
● public static void main(String[] args) {
● int width=10;

– //without lambda, Drawable implementation using anonymous class
● Drawable d=new Drawable() {
● public void draw(){System.out.println("Drawing "+width);} };
● d.draw(); } }

Prof. Tulasi Prasad Sariki
68

Example

● @FunctionalInterface //It is optional
● interface Drawable{ public void draw(); }
● public class LambdaExpressionExample2 {
● public static void main(String[] args) {
● int width=10; //with lambda
● Drawable d2=()-> { System.out.println("Drawing

"+width); };
● d2.draw(); } }

Prof. Tulasi Prasad Sariki
69

Lambda Expression Exp: No Parameter

 interface Sayable { public String say(); }

 public class LambdaExpDemo2{

 public static void main(String[] args)

 {

 Sayable s=()->{ return "I have nothing to say."; };

 System.out.println(s.say());

 }

 }

Prof. Tulasi Prasad Sariki
70

Lambda Expression Exp: Single Parameter

 interface Sayable{ public String say(String name); }

 public class LambdaExpDemo3{

 public static void main(String[] args) {

 // Lambda expression with single parameter.

 Sayable s1=(name)->{ return "Hello, "+name; };

 System.out.println(s1.say("Sonoo"));

 // You can omit function parentheses

 Sayable s2= name ->{ return "Hello, "+name;};

 System.out.println(s2.say("Sonoo"));

 } }

Prof. Tulasi Prasad Sariki
71

Lambda Expression Exp: Multiple Parameters

● interface Addable{ int add(int a,int b); }
● public class LambdaExpDemo4{
● public static void main(String[] args) {
● // Multiple parameters in lambda expression
● Addable ad1=(a,b)->(a+b);
● System.out.println(ad1.add(10,20));
● // Multiple parameters with data type in lambda expression
● Addable ad2=(int a,int b)->(a+b);
● System.out.println(ad2.add(100,200));
● } }

Prof. Tulasi Prasad Sariki
72

Lambda Expression Exp: with List

● import java.util.*;
● public class LambdaExpDemo5{
● public static void main(String[] args) {
● List<String> list=new ArrayList<String>();
● list.add("ankit");
● list.add("mayank");
● list.add("irfan");
● list.add("jai");
● list.forEach((n)->System.out.println(n));
● } }

Prof. Tulasi Prasad Sariki
73

References

● https://docs.oracle.com/javase/tutorial/

● https://www.javatpoint.com/features-of-java

● http://www.java2novice.com/java-fundamentals/

● http://archive.oreilly.com/oreillyschool/courses/java2/

● https://docs.oracle.com/javase/7/docs/api/

● https://www.javatpoint.com/

● https://beginnersbook.com/java-tutorial-for-beginners-with-examples/

● https://www.javaworld.com/

● https://www.geeksforgeeks.org/

https://docs.oracle.com/javase/tutorial/
https://www.javatpoint.com/features-of-java
http://www.java2novice.com/java-fundamentals/
http://archive.oreilly.com/oreillyschool/courses/java2/
https://docs.oracle.com/javase/7/docs/api/
https://www.javatpoint.com/
https://beginnersbook.com/java-tutorial-for-beginners-with-examples/
https://www.javaworld.com/
https://www.geeksforgeeks.org/

Prof. Tulasi Prasad Sariki
74

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

