CSE528

 Natural Language Processing

 Natural Language Processing
 Venue:ADB-405
 Topic: PartsOfSpeach Tagging

Prof. Tulasi Prasad Sariki,
SCSE, VIT Chennai Campus
www.learnersdesk.weebly.com

Definition

The process of assigning a part-of-speech or other lexical class marker to each word in a corpus.

Definition

\square Annotate each word in a sentence with a part-of-speech marker.
\square Lowest level of syntactic analysis.
\square Useful for subsequent syntactic parsing and word sense disambiguation.
\square Example
John saw the saw and decided to take it to the table. NNP VBD DT NN CC VBD TO VB PRPIN DT NN

An Example

WORD	LEMMA	TAG
the	the	+DET
girl	girl	+NOUN
kissed	kiss	+VPAST
the	the	+DET
boy	boy	+NOUN
on	on	+PREP
the	the	+DET
cheek	cheek	+ NOUN

English POS Tagsets

\square Original Brown corpus used a large set of 87 POS tags.
\square Most common in NLP today is the Penn Treebank set of 45 tags.
\square Reduced from the Brown set for use in the context of a parsed corpus (i.e. treebank).
\square The C5 tagset used for the British National Corpus (BNC) has 61 tags.

Word Classes

Basic word classes: Noun, Verb, Adjective, Adverb, Preposition, ...
Open vs. Closed classes

- Open:
- Nouns, Verbs, Adjectives, Adverbs.
- Why "open"?
- Closed:
- determiners: a, an, the
- pronouns: she, he, I
- prepositions: on, under, over, near, by, ...

Closed vs. Open Class

Closed class categories are composed of a small, fixed set of grammatical function words for a given language.
\square prepositions: on, under, over, ...
\square particles: up, down, on, off, ...
\square determiners: a, an, the, ...
\square pronouns: she, who, I, ..
\square conjunctions: and, but, or, ...
\square auxiliary verbs: can, may should, ...

Closed vs. Open Class

Open class categories have large number of words and new ones are easily invented.
\square Nouns new nouns: Internet, website, URL, CD-ROM, email, newsgroup, bitmap, modem, multimedia
-New verbs have also : download, upload, reboot, right-click, doubleclick,
\square Verbs (Google),
\square Adjectives (geeky)
\square Abverb (chompingly)

English Parts of Speech (Nouns)

Noun (person, place or thing)
\square Singular (NN): dog, fork
\square Plural (NNS): dogs, forks
\square Proper (NNP, NNPS): John, Springfields
\square Personal pronoun (PRP): I, you, he, she, it
\square Wh-pronoun (WP): who, what

English Parts of Speech (Nouns)

Proper nouns (Penn, Philadelphia, Davidson)
\square English capitalizes these.
Common nouns (the rest).
Count nouns and mass nouns
\square Count: have plurals, get counted: goat/goats,
Mass: don't get counted (snow, salt, water,)

English Parts of Speech (Verbs)

Verb (actions and processes)
\square Base, infinitive (VB): eat
\square Past tense (VBD): ate
\square Gerund (VBG): eating
\square Past participle (VBN): eaten
\square Non $3^{\text {rd }}$ person singular present tense (VBP): eat
$\square 3^{\text {rd }}$ person singular present tense: (VBZ): eats
\square Modal (MD): should, can
\square To (TO): to (to eat)

English Parts of Speech (Adjectives)

Adjective (modify nouns, identify properties or qualities of nouns)
\square Basic (JJ): red, tall
\square Comparative (JJR): redder, taller
\square Superlative (JJS): reddest, tallest
Adjective ordering restrictions in English:
\square Old blue book, not Blue old book
\square the 44th president
\square a green product
\square a responsible investment
\square the dumbest, worst leader

English Parts of Speech (Adverbs)

Adverb (modify verbs)
\square Basic (RB): quickly
\square Comparative (RBR): quicker
\square Superlative (RBS): quickest
Unfortunately, John walked home extremely slowly yesterday
\square Directional/locative adverbs (here, downhill)
\square Degree adverbs (extremely, very, somewhat)
\square Manner adverbs (slowly, slinkily, delicately)
\square Temporal adverbs (yesterday, tomorrow)

English Parts of Speech (Determiner)

Is a word that occurs together with a noun or noun phrase and serves to express the reference of that noun or noun phrase in the context.
That is, a determiner may indicate whether the noun is referring to a definite or indefinite element of a class, to a closer or more distant element, to an element belonging to a specified person or thing, to a particular number or quantity, etc.

English Parts of Speech(Determiner)

Common kinds of determiners include
\square definite and indefinite articles (the, a, an)
\square demonstratives (this, that, these)
\square possessive determiners (my, their)
\square quantifiers (many, few , several).

English Parts of Speech (preposition)

Preposition (IN): a word governing, and usually preceding, a noun or pronoun and expressing a relation to another word or element in the clause, as in 'the man on the platform', 'she arrived after dinner'.

Ex: on, in, by, to, with

English Parts of Speech

Coordinating Conjunction (CC): that connects words, sentences, phrases or clauses.
the truth of nature, and the power of giving interest
Ex: and, but, or.
Particle (RP): a particle is a function word that must be associated with another word or phrase to impart meaning, i.e., does not have its own lexical definition.

Ex: off (took off), up (put up)

POS tagging

\square POS Tagging is a process that attaches each word in a sentence with a suitable tag from a given set of tags.
\square Tagging is the assignment of a single part-of-speech tag to each word (and punctuation marker) in a corpus.
\square The set of tags is called the Tag-set.
\square Standard Tag-set : Penn Treebank (for English).

POS tagging

\square There are so many parts of speech, potential distinctions we can draw.
\square To do POS tagging, we need to choose a standard set of tags to work with.
\square Could pick very coarse tag sets.
$\square \mathrm{N}, \mathrm{v}, \mathrm{Adj}, \mathrm{Adv}$.
\square More commonly used set is finer grained (Penn TreeBank, 45 tags) \square PRP\$, WRB, WP\$, VBG

POS Tag Ambiguity

\square Deciding on the correct part of speech can be difficult even for people.
\square In English : I bank1 on the bank2 on the river bank3 for my transactions.
\square Bank1 is verb, the other two banks are nouns
\square In Hindi :
\square "Khaanaa" : can be noun (food) or verb (to eat)

Measuring Ambiguity

	87-tag Original Brown	45-tag Treebank Brown
Unambiguous (1 tag)	$\mathbf{4 4 , 0 1 9}$	$\mathbf{3 8 , 8 5 7}$
Ambiguous (2-7 tags)	$\mathbf{5 , 4 9 0}$	$\mathbf{8 8 4 4}$
Details: 2 tags	4,967	6,731
	3 tags	411
4 tags	91	1621
5 tags	17	357
6 tags	2 (well, beat)	90
7 tags	2 (still, down)	32
		6 (well, set, round,
		4 open, fit, down)
		3 ('s, half, back, a)
9 tags		3 (that, more, in)

How Hard is POS Tagging?

\square About 11% of the word types in the Brown corpus are ambiguous with regard to part of speech
\square But they tend to be very common words
$\square 40 \%$ of the word tokens are ambiguous

Penn TreeBank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	$+, \%, d$
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj-, comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sp pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WPS	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	\#	pound sign	\#
PDT	predeterminer	all, both	c	left quote	c Or ${ }^{\circ}$
POS	possessive ending	's	3	right quote	${ }^{\text {, }} \mathrm{Or}{ }^{\prime}$
PRP	personal pronoun	I, you, he	(left parenthesis	$[, C,\{,<$
PRP\$	possessive pronoun	your, one's	$)$	right parenthesis	$]),,\},>$
RB	adverb	quickly, never	,	comma	
RBR	adverb, comparative	faster	.	sentence-final punc	- ! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ; ... -
RP	particle	up, off			

Using the Penn Tagset

\square The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
\square Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
\square Except the preposition/complementizer "to" is just marked "TO".

Process

\square List all possible tag for each word in sentence.
\square Choose best suitable tag sequence.
\square Example
\square "People jump high".
\square People : Noun/Verb
\square jump : Noun/Verb
\square high : Noun/Verb/Adjective
\square We can start with probabilities.

Example

Why POS

\square POS tell us a lot about a word (and the words near it).
\square E.g, adjectives often followed by nouns
\square personal pronouns often followed by verbs
\square possessive pronouns by nouns
\square Pronunciations depends on POS, e.g.
\square object (first syllable NN, second syllable VM), content, discount
\square First step in many NLP applications

Rule-Based Tagging

\square Start with a dictionary.
\square Assign all possible tags to words from the dictionary.
\square Write rules by hand to selectively remove tags.
\square Leaving the correct tag for each word.

Step1: Start with a Dictionary

she:	PRP
promised:	VBN,VBD
to:	TO
back:	VB, JJ, RB, NN
the:	DT
bill:	NN, VB
Etc... for the $\sim 100,000$ words of English with more than 1 tag	

Step2: Assign Every Possible Tag

Step3: Write Rules to Eliminate Tags

Eliminate VBN if VBD is an option when VBN|VBD follows "<start> PRP"

NN

		RB		
	VBN		JJ	VB
PRP	VBD	TO	VB	DT
She	promised	to	back	the
Sill				

Simply assign each word its most likely POS.

Success rate: 91\%!

Word	POS listings in Brown		
heat	noun/89	verb/5	
oil	noun/87		
in	prep/20731	noun/1	adv/462
a	det/22943	noun/50	noun-proper/30
large	adj/354	noun/2	adv/5
pot	noun/27		

END

