# Problem Solving and Programming CSE1001 

Prof. Tulasi Prasad Sariki

October 8, 2019

## FUNCTIONS

## Keyword Arguments in Python

- The functions we have looked at so far were called with a fixed number of positional arguments.
- A positional argument is an argument that is assigned to a particular parameter based on its position in the argument list, as illustrated below.
def mortgage_rate(amount, rate, term)

$$
\text { monthly_payment }=\text { mortgage_rate }(350000,0.06,20)
$$

## Keyword Arguments in Python Contd...

- A keyword argument is an argument that is specified by parameter name, rather than as a positional argument as shown below

```
monthly_payment = mortgage_rate(rate=0.06, term=20, amount=350000)
```


## Default Arguments in Python

- A default argument is an argument that can be optionally provided,

- In this case, the third argument in calls to function mortgage_rate is optional. If omitted, parameter term will be assigned by default to the value 20 (years) as shown. On the other hand, if a third argument is provided, the value passed will replace the default parameter value.

Keyword and Default Argument Examples

- $\ggg \operatorname{def} f(a, b, c)$ :
$\operatorname{print}(a, b, c)$
- $\ggg f(1,2,3)$

123

- $\ggg f(c=3, b=2, a=1)$

123

- $\ggg f(1, c=3, b=2)$
- \# a gets 1 by position, b and c passed by name 123


## Default Examples

- $\ggg \operatorname{def} f(a, b=2, c=3)$ : $\operatorname{print}(a, b, c)$
- \# a required, b and c optional
- >>>f(1) \# Use defaults

123

- $\ggg f(a=1)$

123

- >>>f(1, 4) \# Override defaults

143

- $\ggg f(1,4,5)$

145

- $\ggg f(1, c=6) \quad$ \# Choose defaults


## Functions

## Combining keywords and defaults

- def func(spam, eggs, toast=0, ham=0): \# First 2 required print((spam, eggs, toast, ham))
- $\ggg$ func $(1,2)$ \# Output: (1, 2, 0, 0)
- $\ggg$ func $(1$, ham $=1$, eggs $=0)$ \# Output: $(1,0,0,1)$
- >>>func(spam=1, eggs=0) \# Output: $(1,0,0,0)$
- $\ggg$ func $($ toast $=1$, eggs $=2$, spam $=3) \quad$ O Output: $(3,2,1,0)$
- >>> func(1, 2, 3, 4) \# Output: $(1,2,3,4)$


## Arbitrary Arguments Examples

- Use of '*'
- Collects unmatched positional arguments into a tuple: $\ggg \operatorname{def} f(* \operatorname{args})$ : print(args)
- $\ggg f()$
()
- $\ggg f(1)$
(1,)
- >>>f(1, 2, 3, 4)
(1, 2, 3, 4)


## Arbitrary Arguments Examples

- ** feature is similar, but it only works for keyword arguments - it collects them into a new dictionary
- $\ggg \operatorname{def} f(* *$ args $)$ : print(args)
- $\ggg f()$
\{\}
- $\ggg f(a=1, b=2)$ \{'a': 1, 'b': 2$\}$
- $\ggg \operatorname{def} f($ a, *pargs, **kargs): print(a, pargs, kargs)
- $\ggg f(1,2,3, x=1, y=2)$
$1(2,3)$ \{'y': 2 , 'x': 1$\}$


## Calls: Unpacking arguments

- $\ggg$ def func $(a, b, c, d)$ : $\operatorname{print}(a, b, c, d)$
- $\ggg$ args $=(1,2)$
- $\ggg$ args $+=(3,4)$
- $\ggg$ func $(*$ args $\quad \#$ Same as func $(1,2,3,4)$ 1234
- $\ggg$ args $=\left\{\right.$ 'a': $\left.^{\prime},{ }^{\prime} \mathrm{b}^{\prime}: 2,{ }^{\prime} \mathrm{c}^{\prime}: 3\right\}$
- $\ggg$ args['d'] $=4$
- $\ggg$ func(**args)
\# Same as func $(a=1, b=2, c=3, d=4)$
1234


## Function argument-matching forms

| Syntax | Location | Interpretation |
| :--- | :--- | :--- |
| func(value) | Caller | Normal argument:Matched by position |
| func(name $=$ value) | Caller | Normal argument:Matched by name |
| func(*iterable) | Caller | Pass all object in iterable as individual posi- <br> tion argument |
| func(**dict) | Caller | Pass all key/value pairs in dict as individual <br> keyword argument |
| def func(name) | function | Normal argument: matches any passed value <br> by position or name |
| def func(name = value) | function | Default argument value, if not passed in call <br> def func(*name) <br> function <br> Matches and collects remaining positional ar- <br> guments in tuple <br> def func(*other, name) <br> function <br> Arguments that must be passed by keywords <br> only in calls(3, X) <br> def func(*, name=value) <br> function <br> Arguments that must be passed by keywords <br> only in calls(3, X) | www,vit.ac.in

## Different patterns in Algorithm



## Recursive Functions

## MOTIVATION-Recursion

- Almost all computation involves the repetition of steps.
- Iterative control statements, such as the for and while statements, provide one means of controlling the repeated execution of instructions.
- Another way is by the use of recursion.


## Recursive Algorithms

- In recursive problem solving, a problem is repeatedly broken down into similar sub problems, until the sub problems can be directly solved without further breakdown.
- The functions computed by the algorithms are expressed in terms of itself
- Example Task: Find the Factorial of a positive integer


## Recursive Algorithms

## Algorithm:

## Algorithm Factorial(n)

Begin
if $(\mathrm{n}==1)$ then return 1
else return( n * Factorial(n-1))
End

## What Is a Recursive Function?

- A recursive function is often defined as "a function that calls itself."

Function $A$


## General mechanism of non-recursive function

## Function Definitions



Function
Instances

Function A
Function B
Function C


## Recursive Functions

## Recursive function execution instances

- Execution of a series of recursive function instances is similar to the execution of series of non-recursive instances, except that the execution instances are "clones" of each other (that is, of the same function definition).

Execution Instances

Function
Definition


Function A1


Function A2


Function A3

Call to A

## LET'S TRY IT!

- $\ggg$ def rfunc( $n$ ): print ( n )
if $\mathrm{n}>0$ : rfunc( $\mathrm{n}-1$ )
$-\ggg$ rfunc $(4) \rightarrow ? ? ?$
- $\ggg$ rfunc $(0) \rightarrow$ ???
- $\ggg$ rfunc(100) $\rightarrow$ ???
- $\ggg$ def rfunc $(n)$ :
if $\mathrm{n}==0$ :
return 1
else:
return n * rfunc( $\mathrm{n}-1$ )
- $\ggg$ rfunc $(1) \rightarrow$ ???
- $\ggg$ rfunc $(3) \rightarrow$ ???
- $\ggg$ rfunc(100) $\rightarrow$ ???


## Example: Factorial

## Problem:

The factorial function is an often-used example of the use of recursion.
The computation of the factorial of 4 is given as,

- factorial(4) $=4 * 3 * 2 * 1=24$
- In general, the computation of the factorial of any (positive, nonzero) integer n is,
- factorial(n) $=\mathrm{n} .(\mathrm{n}-1) .(\mathrm{n}-2) \ldots 1$
- The one exception is the factorial of 0 , defined to be 1 .


## Logic

- The factorial of $n$ can be defined as $n$ times the factorial of $n-1$

$$
\text { factorial( } n \text { ) }=n \cdot(\underbrace{(n-1) \cdot(n-2) \cdots 1}_{\text {factorial }(n-1)}
$$

Thus, the complete definition of the factorial function is,

$$
\begin{aligned}
\text { factorial(n) } & =1, & & \text { if } n=0 \\
& =n \cdot \text { factorial }(n-1), & & \text { otherwise }
\end{aligned}
$$

## A Recursive Factorial Function Implementation

```
Factorial Function Implementation
def factorial(n):
    if n==0:
        return 1
    else:
        return n * factorial(n-1)
```


## Input

factorial(4)

## Factorial Recursive Instance Calls



Factorial Recursive Instance Calls

## LET'S TRY IT!

- $\ggg$ def factorial( n ):
if $n==0$ :
return 1
return n * factorial( $\mathrm{n}-1$ )
- $\ggg$ factorial(4) $\rightarrow$ ???
- $\ggg$ factorial(0) $\rightarrow$ ???
- $\ggg$ factorial(100) $\rightarrow$ ???
- $\ggg$ factorial $(10000) \rightarrow$ ???
- $\ggg$ def ifactorial( n ): result $=1$
if $\mathrm{n}==0$ : return result for $k$ in range $(n, 0,-1)$ : result $=$ result ${ }^{*} k$ return result
- $\ggg$ ifactorial(0) $\rightarrow$ ???
- $\ggg$ ifactorial(100) $\rightarrow$ ???
- $\ggg$ ifactorial(10000) $\rightarrow$ ???


## Command line arguments in Linux

```
command.py
import sys
print(len(sys.argv))
print(sys.argv[0])
In terminal:
python command.py 2 3 4
3
command.py
```


## Exercise 1

An artificial rabbit population, satisfying the following conditions:

1. A newly born pair of rabbits, one male, one female, build the initial population.
2. These rabbits are able to mate at the age of one month so that at the end of its second month a female can bring forth another pair of rabbits.
3. These rabbits are immortal
4. A mating pair always produces one new pair (one male, one female)
every month from the second month onwards.
Find the number of rabbit pairs after n-months

## Exercise 2

Ram is planning to give chocolates to two of his brother. He comes to a shop that has ' $n$ ' chocolates of type 1 and ' $m$ ' chocolates of type 2, and Ram wants to buy largest but equal number of both. Write a program to determine the number using recursive function.


