
Problem Solving and Programming
CSE1001

Prof. Tulasi Prasad Sariki

October 8, 2019

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 1 / 26

Functions

FUNCTIONS

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 2 / 26

Functions

Keyword Arguments in Python

The functions we have looked at so far were called with a fixed
number of positional arguments.
A positional argument is an argument that is assigned to a
particular parameter based on its position in the argument list, as
illustrated below.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 3 / 26

Functions

Keyword Arguments in Python Contd...

A keyword argument is an argument that is specified by parameter
name, rather than as a positional argument as shown below

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 4 / 26

Functions

Default Arguments in Python

A default argument is an argument that can be optionally provided,

In this case, the third argument in calls to function mortgage_rate is
optional. If omitted, parameter term will be assigned by default to
the value 20 (years) as shown. On the other hand, if a third argument
is provided, the value passed will replace the default parameter value.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 5 / 26

Functions

Keyword and Default Argument Examples

>>> def f(a, b, c):
print(a, b, c)

>>> f(1, 2, 3)
1 2 3

>>> f(c=3, b=2, a=1)
1 2 3

>>> f(1, c=3, b=2)
a gets 1 by position, b and c passed by name 1 2 3

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 6 / 26

Functions

Default Examples

>>> def f(a, b=2, c=3):
print(a, b, c)

a required, b and c optional
>>> f(1) # Use defaults

1 2 3
>>> f(a=1)

1 2 3
>>> f(1, 4) # Override defaults

1 4 3
>>> f(1, 4, 5)

1 4 5
>>> f(1, c=6) # Choose defaults

1 2 6
Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 7 / 26

Functions

Combining keywords and defaults

def func(spam, eggs, toast=0, ham=0): # First 2 required
print((spam, eggs, toast, ham))

>>>func(1, 2) # Output: (1, 2, 0, 0)
>>>func(1, ham=1, eggs=0) # Output: (1, 0, 0, 1)
>>>func(spam=1, eggs=0) # Output: (1, 0, 0, 0)
>>>func(toast=1, eggs=2, spam=3) # Output: (3, 2, 1, 0)
>>> func(1, 2, 3, 4) # Output: (1, 2, 3, 4)

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 8 / 26

Functions

Arbitrary Arguments Examples

Use of ’*’
Collects unmatched positional arguments into a tuple:
>>> def f(*args):

print(args)
>>> f()
()
>>> f(1)
(1,)
>>> f(1, 2, 3, 4)
(1, 2, 3, 4)

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 9 / 26

Functions

Arbitrary Arguments Examples

** feature is similar, but it only works for keyword arguments - it
collects them into a new dictionary
>>> def f(**args):

print(args)
>>> f()
{}
>>> f(a=1, b=2)
{’a’: 1, ’b’: 2}
>>> def f(a, *pargs, **kargs):

print(a, pargs, kargs)
>>> f(1, 2, 3, x=1, y=2)
1 (2, 3) {’y’: 2, ’x’: 1}

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 10 / 26

Functions

Calls: Unpacking arguments

>>> def func(a, b, c, d):
print(a, b, c, d)

>>> args = (1, 2)
>>> args += (3, 4)
>>> func(*args) # Same as func(1, 2, 3, 4)
1 2 3 4
>>> args = {’a’: 1, ’b’: 2, ’c’: 3}
>>> args[’d’] = 4
>>> func(**args) # Same as func(a=1, b=2, c=3, d=4)
1 2 3 4

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 11 / 26

Functions
Function argument-matching forms

Syntax Location Interpretation

func(value) Caller Normal argument:Matched by position
func(name = value) Caller Normal argument:Matched by name
func(*iterable) Caller Pass all object in iterable as individual posi-

tion argument
func(**dict) Caller Pass all key/value pairs in dict as individual

keyword argument
def func(name) function Normal argument: matches any passed value

by position or name
def func(name = value) function Default argument value, if not passed in call
def func(*name) function Matches and collects remaining positional ar-

guments in tuple
def func(*other, name) function Arguments that must be passed by keywords

only in calls(3 , X)
def func(*, name=value) function Arguments that must be passed by keywords

only in calls(3 , X)

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 12 / 26

Functions

Different patterns in Algorithm

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 13 / 26

Recursive Functions

MOTIVATION-Recursion

Almost all computation involves the repetition of steps.
Iterative control statements, such as the for and while statements,
provide one means of controlling the repeated execution of
instructions.
Another way is by the use of recursion.

Recursive Algorithms

In recursive problem solving, a problem is repeatedly broken down
into similar sub problems, until the sub problems can be directly
solved without further breakdown.
The functions computed by the algorithms are expressed in terms of
itself
Example
Task: Find the Factorial of a positive integer

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 14 / 26

Recursive Functions

Recursive Algorithms

Algorithm:
Algorithm Factorial(n)

Begin
if (n==1) then return 1
else return(n * Factorial(n-1))

End

What Is a Recursive Function?

A recursive function is often defined as ”a function that calls itself.”

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 15 / 26

Recursive Functions

General mechanism of non-recursive function

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 16 / 26

Recursive Functions

Recursive function execution instances

Execution of a series of recursive function instances is similar to the
execution of series of non-recursive instances, except that the
execution instances are ”clones” of each other (that is, of the same
function definition).

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 17 / 26

Recursive Functions

LET’S TRY IT!

>>>def rfunc(n):
print (n)
if n>0:

rfunc(n-1)
>>> rfunc(4) → ???
>>> rfunc(0) → ???
>>> rfunc(100) → ???

>>>def rfunc(n):
if n==0:
return 1

else:
return n * rfunc(n-1)

>>> rfunc(1) → ???
>>> rfunc(3) → ???
>>> rfunc(100) → ???

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 18 / 26

Recursive Functions

Example: Factorial

Problem:
The factorial function is an often-used example of the use of recursion.
The computation of the factorial of 4 is given as,

factorial(4) = 4 * 3 * 2* 1= 24
In general, the computation of the factorial of any (positive, nonzero)
integer n is,
factorial(n) = n . (n-1). (n-2) ... 1
The one exception is the factorial of 0, defined to be 1.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 19 / 26

Recursive Functions

Logic

The factorial of n can be defined as n times the factorial of n - 1

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 20 / 26

Recursive Functions

A Recursive Factorial Function Implementation

Factorial Function Implementation
def factorial(n):

if n==0:
return 1

else:
return n * factorial(n-1)

Input
factorial(4)
Factorial Recursive Instance Calls

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 21 / 26

Recursive Functions

LET’S TRY IT!

>>>def factorial(n):
if n==0:

return 1
return n * factorial(n-1)

>>> factorial(4) → ???
>>> factorial(0) → ???
>>> factorial(100) → ???
>>> factorial(10000) → ???

>>> def ifactorial(n):
result =1
if n==0:

return result
for k in range(n,0,-1):

result = result * k
return result
>>> ifactorial(0) → ???
>>> ifactorial(100) → ???
>>> ifactorial(10000) → ???

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 22 / 26

Recursive Functions

Command line arguments in Linux

command.py
import sys
print(len(sys.argv))
print(sys.argv[0])
In terminal:
python command.py 2 3 4
3
command.py

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 23 / 26

Recursive Functions

Exercise 1
An artificial rabbit population, satisfying the following conditions:
1. A newly born pair of rabbits, one male, one female, build the initial
population.
2. These rabbits are able to mate at the age of one month so that at the
end of its second month a female can bring forth another pair of rabbits.
3. These rabbits are immortal
4. A mating pair always produces one new pair (one male, one female)
every month from the second month onwards.
Find the number of rabbit pairs after n-months

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 24 / 26

Recursive Functions

Exercise 2
Ram is planning to give chocolates to two of his brother. He comes to a
shop that has ’n’ chocolates of type 1 and ’m’ chocolates of type 2, and
Ram wants to buy largest but equal number of both. Write a program to
determine the number using recursive function.

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 25 / 26

Prof. Tulasi Prasad Sariki CSE1001 October 8, 2019 26 / 26

