
CSE528
Natural Language Processing
Venue:ADB-405 Topic: Regular Expressions & Automata

Prof. Tu las i Prasad Sar ik i ,

SCSE, V IT Chennai Campus

www.learnersdesk.weebly.com

http://www.learnersdesk.weebly.com/

Contents
 NLP Example: Chat with Alice

 Regular Expressions

 Regular Expression Patterns

 Operator precedence

 Applications

 Regular Expressions in MS-Word

 Finite Automata

 FSA / FST

 Applications of FSA & FST

REGULAR EXPRESSIONS AND AUTOMATA 2

NLP Example: Chat with Alice
A.L.I.C.E. (Artificial Linguistic Internet Computer Entity) is an award-
winning free natural language artificial intelligence chat robot. The
software used to create A.L.I.C.E. is available as free ("open source")
Alicebot and AIML software.

http://www.alicebot.org/about.html

REGULAR EXPRESSIONS AND AUTOMATA 3

http://www.alicebot.org/about.html

Regular Expressions
In computer science, RE is a language used for specifying text search string.

A regular expression is a formula in a special language that is used for
specifying a simple class of string.

Formally, a regular expression is an algebraic notation for characterizing a
set of strings.

RE search requires
◦ a pattern that we want to search for, and

◦ a corpus of texts to search through.

REGULAR EXPRESSIONS AND AUTOMATA 4

Regular Expressions
A RE search function will search through the corpus returning all
texts that contain the pattern.
◦ In a Web search engine, they might be the entire documents or Web

pages.

◦ In a word-processor, they might be individual words, or lines of a
document.

◦ E.g., the UNIX grep command

Regular expressions are case sensitive.

We will use Perl based syntax for representation.

REGULAR EXPRESSIONS AND AUTOMATA 5

Regular Expressions
Disjunctions [abc]

Ranges [A-Z]

Negations [^Ss]

Optional characters ? and *

Wild cards .

Anchors ^ and $, also \b and \B

Disjunction, grouping, and precedence |

REGULAR EXPRESSIONS AND AUTOMATA 6

Regular Expression Patterns

REGULAR EXPRESSIONS AND AUTOMATA 7

regular expression example pattern matched

/woodchucks/ “interesting links to woodchucks and lemurs”

/a/ “Mary Ann stopped by Mona’s”

/Claire says,/ Dagmar, my gift please,” Claire says,”

/song/ “all our pretty songs”

/!/ “You’ve left the burglar behind again!” said Nori

Regular Expression Patterns
The use of the brackets [] to specify a disjunction of characters.

REGULAR EXPRESSIONS AND AUTOMATA 8

Regular Expression Match

/[wW]oodchuck/ Woodchuck or woodchuck

/[abc]/ “a”, “b”, or “c”

/[0123456789]/ Any digit

Regular Expression Patterns
The use of the brackets [] plus the dash - to specify a range.

REGULAR EXPRESSIONS AND AUTOMATA 9

Regular expression match sample pattern

/[A-Z]/ any uppercase letter this is Linguistics 5981

/[0-9]/ any single digit this is Linguistics 5981

/[1 2 3 4 5 6 7 8 9 0]/ any single digit this is Linguistics 5981

Regular Expression Patterns

REGULAR EXPRESSIONS AND AUTOMATA 10

To search for negation, i.e. a character that I do NOT want to find we use
the caret: [^]

Regular expression match sample pattern

/[^A-Z]/ not an uppercase letter this is Linguistics 5981

/[^L l]/ neither L nor l this is Linguistics 5981

/[^\.]/ not a period this is Linguistics 598

* an asterisk “L*I*N*G*U*I*S*T*I*C*S”
\. a period “Dr.Doolittle”
\? a question mark “Is this Linguistics 5981 ?”
\n a newline
\t a tab

Special characters:

Regular Expression Patterns

REGULAR EXPRESSIONS AND AUTOMATA 11

To search for optional characters we use the question mark: [?]

Regular expression match sample pattern

/colou?r/ colour or color beautiful colour

To search for any number of a certain character we use the Kleene star: [*]

Regular expression match

/a*/ any string of zero or more “a”s

/aa*/ at least one a but also any number of “a”s

Regular Expression Patterns

REGULAR EXPRESSIONS AND AUTOMATA 12

To look for at least one character of a type we use the Kleene “+”:

Regular expression match

/[0-9]+/ a sequence of digits

Any combination is possible

Regular expression match

/[ab]*/ zero or more “a”s or “b”s

/[0-9] [0-9]*/ any integer (= a string of digits)

Regular Expression Patterns

REGULAR EXPRESSIONS AND AUTOMATA 13

The “.” is a very special character -> so-called wildcard

Regular expression match sample pattern

/b.ll/ any character between b and ll ball, bell, bull, bill

The /. / symbol is called a wildcard : it matches any single character. For example, the
regular expression /s.ng/ matches the following English words:

sang, sing, song, sung.

Note that /./ will match and not only alphabetic characters, but also numeric and
whitespace characters. Consequently, /s.ng/ will also match non-words such as s3ng.

The pattern /....berry/ finds words like cranberry.

Regular expression match sample pattern

/\bthe\b/ “the” alone This is the place.

/\Bthe\B/ “the” included This is my mother.

Regular Expression Patterns

REGULAR EXPRESSIONS AND AUTOMATA 14

Anchors (start of line: “^”, end of line:”$”)

Regular expression match sample pattern

/^Linguistics/ “Linguistics” at the beginning of a line Linguistics is fun.

/linguistics\.$/ “linguistics” at the end of a line We like linguistics.

Anchors (word boundary: “\b”, non-boundary:”\B”)

Regular Expression Patterns

REGULAR EXPRESSIONS AND AUTOMATA 15

More on alternative characters: the pipe symbol: “|” (disjunction)

Regular expression match sample pattern

/colou?r/ colour or color beautiful colour

/progra(m|mme)/ program or programme linguistics program

Predefined Character class

Character class Description

\d A digit. Equivalent to[0-9].

\D A non-digit. Equivalent to [^0-9].

\s A whitespace character. Equivalent to [\t\n\x0B\f\r].

\S A nonwhitespace character. Equivalent to[^\s].

\w A word character. Equivalent to [a-zA-Z_0-9].

\W A non-word character. Equivalent to [^\w].

REGULAR EXPRESSIONS AND AUTOMATA 16

Boundary matchers

Boundary Matcher Description

^ The beginning of a line

$ The end of a line

\b A word boundary

\B A nonword boundary

\A The beginning of the text

\G The end of the previous match

\Z The end of the text (but for the final line terminator, if any)

\z The end of the text

REGULAR EXPRESSIONS AND AUTOMATA 17

Quantifiers

Character Description

{n} n is a nonnegative integer. Matches exactly n times. For example, 'o{2}' does
not match the 'o' in "Bob," but matches the two o's in "food".

{n,} n is a nonnegative integer. Matches at least n times. For example, 'o{2,}'
does not match the "o" in "Bob" and matches all the o's in "foooood". 'o{1,}'
is equivalent to 'o+'. 'o{0,}' is equivalent to 'o*'.

{n,m} M and n are nonnegative integers, where n <= m. Matches at least n and at
most m times. For example, "o{1,3}" matches the first three o's in
"fooooood". 'o{0,1}' is equivalent to 'o

REGULAR EXPRESSIONS AND AUTOMATA 18

Operator precedence
A regular expression is evaluated from left to right and follows an order of
precedence, much like an arithmetic expression.

The following table illustrates, from highest to lowest, the order of precedence
of the various regular expression operators:

REGULAR EXPRESSIONS AND AUTOMATA 19

Operator(s) Description

\ Escape

(), (?:), (?=), [] Parentheses and Brackets

*, +, ?, {n}, {n,}, {n,m} Quantifiers

^, $, \anymetacharacter, anycharacter Anchors and Sequences

| Alternation

Operator precedence
Characters have higher precedence than the alternation operator, which
allows 'm|food' to match "m" or "food". To match "mood" or "food", use
parentheses to create a subexpression, which results in '(m|f)ood'.

REGULAR EXPRESSIONS AND AUTOMATA 20

Applications
Regular Expressions for the Java Programming Language

• java.util.regex for enabling the use of regular expressions

Applications
• Simple word replacement

• Email validation

• Removal of control characters from a file

• File searching

REGULAR EXPRESSIONS AND AUTOMATA 21

write a Perl regular expression to match the English article “the”:

Example

REGULAR EXPRESSIONS AND AUTOMATA 22

/the/ missed ‘The’

included ‘the’ in ‘others’/[tT]he/

/\b[tT]he\b/ Missed ‘the25’ ‘the_’

/[^a-zA-Z][tT]he[^a-zA-Z]/ Missed ‘The’ at the beginning of a line

/(^|[^a-zA-Z])[tT]he[^a-zA-Z]/

Example
Write a regular expression that will match “any PC with more than
500MHz and 32 Gb of disk space for less than $1000”:

Price
◦ /$[0-9]+/ # whole dollars

◦ /$[0-9]+\.[0-9][0-9]/ # dollars and cents

◦ /$[0-9]+(\.[0-9][0-9])?/ #cents optional

◦ /\b$[0-9]+(\.[0-9][0-9])?\b/ #word boundaries

REGULAR EXPRESSIONS AND AUTOMATA 23

Example
Specifications for processor speed
◦ /\b[0-9]+ *(MHz|[Mm]egahertz|Ghz|[Gg]igahertz)\b/

Memory size
◦ /\b[0-9]+ *(Mb|[Mm]egabytes?)\b/

◦ /\b[0-9](\.[0-9]+) *(Gb|[Gg]igabytes?)\b/

Vendors
◦ /\b(Win95|WIN98|WINNT|WINXP *(NT|95|98|2000|XP)?)\b/

◦ /\b(Mac|Macintosh|Apple)\b/

REGULAR EXPRESSIONS AND AUTOMATA 24

Example

Expression Matches

/^\s*$/ Match a blank line.

/\d{2}-\d{5}/ Validate an ID number consisting of 2
digits, a hyphen, and an additional 5 digits.

/<\s*(\S+)(\s[^>]*)?>[\s\S]*<\s*\/\1\s*>/ Match an HTML tag.

REGULAR EXPRESSIONS AND AUTOMATA 25

Regular Expressions in MS-Word

REGULAR EXPRESSIONS AND AUTOMATA 26

? and *
The two most basic wildcard characters are ? and *.

? is used to represent a single character and * represents any number of characters.

 s?t will find sat, set, sit, sat and any other combination of 3 characters
beginning with “s” and ending with “t”. Ex: inset.

 s*t will find all the above, but will also find “secret”, “serpent”, “sailing
boat” and“sign over document”, etc.

@
@ is used to find one or more occurrences of the previous character.

 For example, lo@t will find lot or loot, ful@ will find ful or full etc.

Regular Expressions in MS-Word

REGULAR EXPRESSIONS AND AUTOMATA 27

< >
 <s*t> would find “secret” and “serpent” and “sailing boat”, but not “sailing boats”

or “sign over documents”. It will also find “'set” in “tea-set” , but not “set” in
“toolset”.

 The <> tags can be used in pairs, as above; or individually.

 ful@> will find “full” and the appropriate part of “wilful”, but will not find “wilfully”.

Regular Expressions in MS-Word

REGULAR EXPRESSIONS AND AUTOMATA 28

[]
Square brackets are always used in pairs and are used to identify specific characters

or ranges of characters.
 [abc] will find any of the letters a, b, or c.
 [A-Z] will find any upper case letter.
 [13579] will find any odd digit.

\
 If you wish to search for a character that has a special meaning in wildcard searches

– the obvious example being “?” – then you can do so by putting a backslash in front
of it.
 [\?] will not find “\” followed by any character; but will find “?”

Regular Expressions in MS-Word

REGULAR EXPRESSIONS AND AUTOMATA 29

[!]
 [!] is very similar to [] except in this case it finds any character not listed in the box

so [!o] would find every character except “o”.

 You can use ranges of characters in exactly the same was as with [], thus [!A-Z] will
find everything except upper case letters.

Regular Expressions in MS-Word

REGULAR EXPRESSIONS AND AUTOMATA 30

{ }
 Curly brackets are used for counting occurrences of the previous character or

expression.

 {n} This finds exactly the number “n” of occurrences of the previous character (so
for example, a{2} will find “aa”).

 {n,m} finds text containing between “n” and “m” occurrences of the previous
character or expression; so a{2,3} will find “aa” and “aaa”, but only the first 3
characters in “aaaa”).

Regular Expressions in MS-Word

REGULAR EXPRESSIONS AND AUTOMATA 31

()
 Round brackets have no effect on the search pattern, but are used to divide the

pattern into logical sequences where you wish to re-assemble those sequences in a
different order during the replace – or to replace only part of that sequence.

 They must be used in pairs and are addressed by number in the replacement.

 Eg: (Tulasi) (Prasad) replaced by \2 \1 (note the spaces in the search and replace
strings) – will produce Prasad Tulasi or replaced by \2 alone will give Prasad.

^

 The ^ (“caret”) character is not specific to wildcard searches but it sometimes has to
be used slightly differently from normal, when searching for wildcards.

Finite Automata

REGULAR EXPRESSIONS AND AUTOMATA 32

 The regular expression is more than just a convenient meta-language for text
searching.

 Any regular expression can be implemented as a finite-state automaton.

 Symmetrically, any finite-state automaton can be described with a regular
expression.

 Regular expression is one way of characterizing a particular kind of formal
language called a regular language.

 Both regular expressions and finite-state automata can be used to describe
regular languages.

Finite Automata

REGULAR EXPRESSIONS AND AUTOMATA 33

The relationship between finite state automata, regular expression, and
regular language

Finite state automata
(Computataional Device)

Regular Expression
(Descriptive Notation)

Regular language
(Set of Objects)

What is a Finite-State Automaton?

REGULAR EXPRESSIONS AND AUTOMATA 34

 An alphabet of symbols,

 A finite set of states,

 A transition function from states and symbols to states,

 A distinguished member of the set of states called the start state, and

 A distinguished subset of the set of states called final states.

 FSA recognize the regular languages represented by regular expressions

 Directed graph with labeled nodes and arc transitions

Formally

REGULAR EXPRESSIONS AND AUTOMATA 35

 FSA is a 5-tuple consisting of

 Q: a finite set of N states q0, q1, …, qN

 : a finite input alphabet of symbols

 q0: the start state

 F: the set of final states, F Q

 (q,i): a transition function mapping Q x to Q

FSA Accepter

REGULAR EXPRESSIONS AND AUTOMATA 36

Input

“Accept”

or

“Reject”

String

Finite

Automaton

Output

Transition Graph

REGULAR EXPRESSIONS AND AUTOMATA 37

initial

state
final state “accept”

state transition

abba -Finite Accepter

0q 1q 2q 3q 4qa b b a

5q

a a bb

ba,

ba,

Initial Configuration

REGULAR EXPRESSIONS AND AUTOMATA 38

1q 2q 3q 4qa b b a

5q

a a bb

ba,

Input String

a b b a

ba,

0q

Reading Input

REGULAR EXPRESSIONS AND AUTOMATA 39

1q 2q 3q 4qa b b a

5q

a a bb

ba,

Input String

a b b a

ba,

0q

Reading Input

REGULAR EXPRESSIONS AND AUTOMATA 40

1q 2q 3q 4qa b b a

5q

a a bb

ba,

Input String

a b b a

ba,

0q

Reading Input

REGULAR EXPRESSIONS AND AUTOMATA 41

1q 2q 3q 4qa b b a

5q

a a bb

ba,

Input String

a b b a

ba,

0q

Reading Input

REGULAR EXPRESSIONS AND AUTOMATA 42

1q 2q 3q 4qa b b a

5q

a a bb

ba,

Input String

a b b a

ba,

0q

Reading Input

REGULAR EXPRESSIONS AND AUTOMATA 43

1q 2q 3q 4qa b b a

5q

a a bb

ba,

Input String

a b b a

ba,

0q Output: Accepted

Using an FSA to Recognize Sheep talk

REGULAR EXPRESSIONS AND AUTOMATA 44

Using an FSA to Recognize Sheep Talk

REGULAR EXPRESSIONS AND AUTOMATA 45

Sheep language can be defined as any string from the following (infinite) set:

The regular expression for this kind of sheeptalk is

/baa+!/

All RE can be represented as FSA

baa!

baaa!

baaaa!

baaaaa!

....

q0 q4q1 q2 q3

b a
a

a !

State Transition Table for Sheep Talk

REGULAR EXPRESSIONS AND AUTOMATA 46

State
Input

b a !

0(null) 1 Ø Ø

1 Ø 2 Ø

2 Ø 3 Ø

3 Ø 3 4

4: Ø Ø Ø

q0 q4q1 q2 q3

b a

a

a !

Algorithm

REGULAR EXPRESSIONS AND AUTOMATA 47

function D-RECOGNIZE(tape,machine) returns accept or reject

index <- Beginning of tape

current-state <- Initial state of machine

loop

if End of input has been reached then

if current-state is an accept state then

return accept

else
return reject

elseif transition-table[current-state,tape[index]] is empty then

return reject

else

current-state <- transition-table[current-state,tape[index]]

index <- index +1

Using an FSA to Recognize Sheep Talk

REGULAR EXPRESSIONS AND AUTOMATA 48

 FSA recognizes (accepts) strings of a regular language
 baa!

 baaa!

 baaaa!

 …

 Tracing the execution of FSA on some sheep talk

q0 q4q1 q2 q3

b a
a

a !

... b a a a !

q
0

q q q q q
1 2 3 3 4

Adding a fail state to FSA

REGULAR EXPRESSIONS AND AUTOMATA 49

q
0

q q q q
1 2 3 4

b a a

a

!

f
q

a

!
b

b
b

b

!
! !

ac

?

Adding an else arch

REGULAR EXPRESSIONS AND AUTOMATA 50

Adding ϵ Transition

REGULAR EXPRESSIONS AND AUTOMATA 51

40
q q

1

b

2
q q q

!a a

3

ϵ

Example FSA
An FSA for the words of English numbers 1-99

REGULAR EXPRESSIONS AND AUTOMATA 52

FSA for NLP

REGULAR EXPRESSIONS AND AUTOMATA 53

Word Recognition

 Dictionary Lookup

 Spelling Conventions

Word Recognition

REGULAR EXPRESSIONS AND AUTOMATA 54

A word recognizer takes a string of characters as input and returns “yes”
or “no” according as the word is or is not in a given set.

Solves the membership problem.
 e.g. Spell Checking, Scrabble(Un-ordered Concatenation)

Approximate methods
 Has right set of letters (any order).

 Has right sounds (Soundex).

 Random (suprimposed) coding (Unix Spell)

Word Recognition

Exact Methods

 Hashing

 Search (linear, binary ...)

 Digital search (“Tries”)

 Finite-state automata

REGULAR EXPRESSIONS AND AUTOMATA 55

Dictionary Lookup
Dictionary lookup takes a string of characters as input and returns “yes” or “no”
according as the word is or is not in a given set and returns information about
the word.

Lookup Methods

Approximate — guess the information
 If it ends in “ed”, it’s a past-tense verb.
 Exact — store the information for finitely many words
 Table Lookup
 Hash

 Search

REGULAR EXPRESSIONS AND AUTOMATA 56

Finite State Transducers
A finite state transducer essentially is a finite state automaton that works
on two (or more) tapes. The most common way to think about
transducers is as a kind of ``translating machine''. They read from one of
the tapes and write onto the other.

a:b at the arc means that in this transition the transducer reads a from the
first tape and writes b onto the second.

REGULAR EXPRESSIONS AND AUTOMATA 57

q

a:b

0

Finite State Transducers
Transducer behaves as follows in the different modes.

 generation mode: It writes a string of as on one tape and a string bs on
the other tape. Both strings have the same length.

 recognition mode: It accepts when the word on the first tape consists of
exactly as many as as the word on the second tape consists of bs.

 translation mode (left to right): It reads as from the first tape and writes
an b for every a that it reads onto the second tape.

 translation mode (right to left): It reads bs from the second tape and
writes an a for every f that it reads onto the first tape.

 relator mode: Computes relations between sets

REGULAR EXPRESSIONS AND AUTOMATA 58

FST vs FSA
FSA can act as a
 Recognizer

 Generator

 5 tuple Representation

 Equivalent to regular languages

REGULAR EXPRESSIONS AND AUTOMATA 59

FST can act as a
 Recognizer

 Generator

 Translator

 Set relator

 7 tuple Representation

 Equivalent to regular relations

FST Operations
 Inversion: Switching input and output labels
 If T maps from I to O, T-1 maps from O to I

 Composition:
 If T1 is a transducer from I1 to O1 and T2 is a transducer from I2 to O2,

then T1 T2 is a transducer from I1 to O2.

REGULAR EXPRESSIONS AND AUTOMATA 60

FST for NLP
 Tokenization

Morphological analysis

 Transliteration

 Parsing

 Translation

 Speech recognition

 Spoken language understanding

REGULAR EXPRESSIONS AND AUTOMATA 61

REGULAR EXPRESSIONS AND AUTOMATA 62

