PROBLEM SOLVING AND PROGRAMMING

CSE1001

Prof. Tulasi Prasad Sariki

October 14, 2019

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

Searching
Sequential & Binary Search

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

PROBLEM

When the city planners developed your neighborhood, they accidentally
numbered the houses wrong. As such, the addresses of the houses on your
street are in a random order. How does the postman find your house using
a linear search method?

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

PSEUDOCODE

READ street__door__numbers and door__number_searched
FOR i = 0 to length(street_door_numbers )
IF street_door_numbers [i] == door_number_searched
THEN
give the post in the house
break
END FOR

PROF. TULASI PRASAD SARIKI CSE1001

OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

SEARCHING

@ Searching is the algorithmic process of finding a particular item in a
collection of items.

@ A search typically answers either True or False as to whether
the item is present.

OCTOBER 14, 2019

PROF. TULASI PRASAD SARIKI CSE1001



INTRODUCTION TO SEARCHING

TYPES OF SEARCHING

@ SEQUENTIAL / LINEAR SEARCH
@ BINARY SEARCH

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

SEQUENTIAL SEARCH

@ When data items are stored in a collection such as a list, we say that
they have a linear or sequential relationship.

@ Each data item is stored in a position relative to the others.

@ In Python lists, these relative positions are the index values of the
individual items. Since these index values are ordered, it is possible
for us to visit them in sequence.

@ This process gives rise to our first searching technique, the sequential
search

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

SEQUENTIAL SEARCH

@ Starting at the first item in the list, we simply move from item to
item, following the underlying sequential ordering until we either find
what we are looking for or run out of items. If we run out of items, we
have discovered that the item we were searching for was not present.

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

Example

List of elements 58,62,75,88,92,105 s
Element to be searched: 75

1 58 62 75 | 88 I 92 105 75:53 NO
..2_ 58162 75 88 | 92 105 ?5;52 NO
3 58 62 75 88 92 105 75=15 YES
= ?

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

Linear Search Algorithm

procedure Linear Search (List of N elements, Search element S)
Begin
fori=1to N
if (ith element of the list = S)
return address or index of the ith element
end if
end for
return Errors not found in the list
End

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019 10 / 21



INTRODUCTION TO SEARCHING

Python Implementation

@ The function needs the list and the item we are looking for and
returns a Boolean value as to whether it is present.

@ The Boolean variable found is initialized to False and is assigned the
value True if we discover the item in the list.

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

PYTHON CODE - SEQUENTIAL SEARCH

def SeqSearch(alist ,item):

found = False
for i in range(0,len(alist)):
if item=alist[i]:
found = True

return found
testlist = [0,1,2,8,13,17,19,32,42]
print (SeqSearch(testlist ,3))
print (SeqSearch(testlist ,13))

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

Exercise-Sequential Search

EXERCISE - SEQUENTIAL SEARCH

You need a picture frame, so you walk down to the local photo store to
examine their collection. They have all of their frames lined up against the
wall. Apply the linear search algorithm to this problem, and describe how
you would find the frame you wanted. Starting at the first frame, examine
each frame along the wall (without skipping any) until you find the frame
you want.

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

BINARY SEARCH

@ In the sequential search, when we compare against the first item,
there are at most n—1 more items to look through if the first item is
not what we are looking for.

@ Instead of searching the list in sequence; binary search will start by
examining the middle item. If that item is the one we are searching
for, we are done.

@ If it is not the correct item, we can use the ordered nature of the list
to eliminate half of the remaining items.

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

BINARY SEARCH
Algorithm can quickly find the value 54

@ If the item we are searching for is greater than the middle item, we
know that the entire lower half of the list as well as the middle item
can be eliminated from further consideration.

@ The item, if it is in the list, must be in the upper half. We can then
repeat the process with the upper half. Start at the middle item and
compare it against what we are looking for. Again, we either find it or
split the list in half, therefore eliminating another large part of our
possible search space

PROF. TULASI PRASAD SARIKI CSE1001



INTRODUCTION TO SEARCHING

Binary Search Example

Data 10.20,30,40,50 and Search element 40

|ndex 1 2 3 4 5
Elements 10

A
°

20 30 40 50
/ /0N ﬁ
U U

PROF. TULASI PRASAD SARIKI

CSE1001

/
Low = 1 and High =5
SoMid=(1+5)2=3

ArMid] = 30 < 40
Low=Mid +1 =4

Mid = (Low + High)/2
Mid=45=4

ArrfMid] = 40

The indexto be returnedis 4

OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

Binary Search Algorithm

procedure BinarySearch(ArrayArrof N ele )
Search element S)
Begin
Low<- 1
High<r N
while (High>=Low)
mid = (High + Low)/2
if (Arr[mid] = S) then return mid
else
if(Arr[mid] < S)then low = mid +1
else high=mid -1
end if
end if
end while
End

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

PYTHON CODE - BINARY SEARCH

def BinarySearch(alist ,item):
first=0
last=len(alist)—1
found=False
while (first<=last and not found):
midpoint = (first+last)//2
if (alist[midpoint]J==item):
found = True
else:
if (item < alist[midpoint]):
last=midpoint—1
else:
first=midpoint+1
return found
testlist=[0,1,2,8,13,17,19,32,42]
print (BinarySearch (testlist ,3))
print (BinarySearch (testlist ,13))

CSE1001 OCTOBER 14, 2019 18 / 21

PROF. TULASI PRASAD SARIKI



INTRODUCTION TO SEARCHING

Binary Search - Exercise

BINARY SEARCH
@ Given a ordered list of student rank with the name of student. Your
program will read the rank from the user and display the name of the
student.

@ An employee number is generated in ascending order whenever a new
employee joins. Your program will read the employee number and
display the dept of the employee

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019



INTRODUCTION TO SEARCHING

Binary Search - More Exercise

BINARY SEARCH

@ The element being searched for is not in an array of 100 elements.
What is the maximum number of comparisons needed in a sequential
search to determine that the element is not there if the elements are:
(a) completely unsorted? (b) sorted in ascending order? (c) sorted in
descending order?

@ Consider the following array of sorted integers: 10, 15, 25, 30, 33, 34,
46, 55, 78, 84, 96, 99 Using binary search algorithm, search for 23.
Show the sequence of array elements that are compared, and for each
comparison, indicate the values of low and high

PROF. TULASI PRASAD SARIKI CSE1001 OCTOBER 14, 2019 20 /21



CSE1001



