Sentiment Analysis & Opinion Mining

Tulasi Prasad Sariki,
SCSE, VIT University
Introduction – facts and opinions

• Two main types of information on the Web.
 • Facts(Objective) and Opinions(Subjective)

 Fact : Thursday is a day.
 Opinion : Thursday was a fun day.
 Fact : iPhone is an Apple product.
 Opinion : iPhone is good.

• Google searches for facts (currently)
• Facts can be expressed with topic keywords
• Google does not search for opinions
 • Opinions are hard to express with keywords
 • Current search ranking strategy is not appropriate for opinion search(AskUs)
Motivation

- **What others think** has always been an important piece of information
 - “Which car should I buy?”
 - “Which schools should I apply to?”
 - “Which Professor to work for?”
 - “Whom should I vote for?”

- **Data Sources (User Generated Content)**
 - Blogs
 - Review Sites (amazon)
 - Micro-blogging (Twitter)
User generated content

• Word-of-mouth on the Web
 • One can express opinions on almost anything (product, service, person, movie, location, event, organization etc.), at review sites, forums, discussion groups, blogs etc. (called user generated content.)
 • They contain valuable information

• Our interest:
 • To mine opinions expressed in user generated content
 • An intellectually very challenging problem.
 • Practically very useful.
Introduction - Applications

• Businesses and organizations: Market intelligence.
 • Business spends a huge amount of money to find consumer opinions.

• Individuals: interested in other’s opinions when
 • Purchasing a product.
 • Using a service.
 • Finding opinions on political topics.
 • Many other decision making tasks.

• Ads placements: Placing ads in user-generated content
 • Place an ad when one praises an product.
 • Place an ad from a competitor if one criticizes an product.
Introduction - Opinion Mining

• Opinion mining is a recent discipline at the crossroads of information retrieval and computational linguistics which is concerned not with the topic a document is about, but with the opinion it expresses.

• What is an opinion?
 • Private state – a state that is not open to objective observation or verification [Quirk et al., 1985]

• Sentiment Analysis, Sentiment Classification, Opinion Extraction, Subjectivity Analysis, Emotion Analysis, Review Mining are other names used in literature to identify this discipline.
Introduction - Kinds of opinions

• Two types of evaluation
 1. Mining Regular opinions (Direct/Indirect)
 This Camera is great.
 The Picture Quality of Camera is Great.
 After Injection of the drug, my joints felt worst
 \(\text{\textlangle\textrangle}\) Indirect
 Since my joints were painful, my doctor put me on this drug
 \(\text{\textlangle\textrangle}\) Not an Opinion
 Crux: drug injection before or after
 2. Mining Comparative (Comparative or Superlative) opinions (Explicit/Implicit)
 Coke tastes better than Pepsi.
 Coke tastes the best.
 \(\text{\textlangle\textrangle}\) Direct (simpler to handle)
 \(\text{\textlangle\textrangle}\) Indirect (Harder to deal)
Introduction - Typical opinion search queries

• Find the opinion of a person or organization (opinion holder) on a particular object or a feature of an object.
 • E.g., what is the kejriwal’s opinion on jan lokpal bill?
 • Find positive and/or negative opinions on a particular object (or some features of the object), e.g.,
 • customer opinions on a digital camera,
 • public opinions on a political topic.

• Find how opinions on an object change with time.

• How object A compares with Object B?
 • Gmail vs. Yahoo mail
Introduction - Find the opinion of a person on X

• In some cases, the general search engine can handle it, i.e., using suitable keywords.
 • kejriwal’s opinion on jan lokpal bill

• Reason:
 • One person or organization usually has only one opinion.
 • The opinion is likely contained in a single document.
 • Thus, a good keyword query may be sufficient.
Introduction - Find opinions on an object X

We use the product reviews as an example:

• Searching for opinions in product reviews is different from general Web search.
 • E.g., search for consumer opinions on a digital camera

• General Web search: rank pages according to some authority and relevance scores.
 • The user looks at the first page (if the search is perfect).

• Opinion search: rank is desirable, however
 • reading only the review ranked at the top is dangerous because it is only the opinion of one person.
Introduction - Search opinions (contd.)

Ranking:

• produce two rankings
 • Positive opinions and negative opinions
 • Some kind of summary of both, e.g., # of each

• Or, one ranking but
 • The top (say 30) reviews should reflect the natural distribution of all reviews (assume that there is no spam), i.e., with the right balance of positive and negative reviews.

• Questions:
 • Should the user reads all the top reviews?
 • Or should the system prepare a summary of the reviews?
Introduction - Reviews are similar to surveys

• Reviews can be regarded as traditional surveys.
 • In traditional survey, returned survey forms are treated as raw data.
 • Analysis is performed to summarize the survey results.
 • E.g., % against or for a particular issue, etc.

• In opinion search,
 • Can a summary be produced?
 • Yes
 • What should the summary be?
 • sentiment prediction (by aggregating the sentiment scores)
Introduction-Opinion (the abstraction)

• Basic components of an opinion
 • Opinion holder: The person or organization that holds a specific opinion on a particular object.
 • Object: on which an opinion is expressed
 • Attributes / Components (Features)
 • Opinion: a view, attitude, or appraisal on an object from an opinion holder.
Introduction—Opinion Representation

An opinion is a quin-tuple, \((ei; aij; ooijkl; hk; tl)\), where \(ei\) is the name of an entity, \(aij\) is an aspect of \(ei\), \(ooijkl\) is the orientation of the opinion about aspect \(aij\) of entity \(ei\), \(hk\) is the opinion holder, and \(tl\) is the time when the opinion is expressed by \(hk\).

- The opinion orientation \(ooijkl\) can be \(+ve\), \(-ve\), neutral, or be expressed with a different intensity levels.
- When an opinion is on the entity itself as a whole, we use the special aspect \(GENERAL\) to denote it.
OM can be done at Various Levels

Opinion Mining Levels of Granularity

• Document level sentiment classification
• Sentence level sentiment analysis
• Feature-based opinion mining and summarization
• Comparative sentence and relation extraction
Linguistic Concepts for Opinion Mining

Research work on this topic deal with three main tasks

- Determining term orientation, as in deciding if a given Subjective term has a Positive or a Negative slant.
- Determining term subjectivity, as in deciding whether a given term has a Subjective or an Objective nature.
- Determining the strength of term attitude (either orientation or subjectivity), as in attributing to terms (real-valued) degrees of positivity or negativity.
Linguistic Concepts for Opinion Mining

Example

• good, excellent, best – positive terms
• bad, wrong, worst – negative terms
• vertical, yellow, liquid – objective terms

Not only terms:

• Term senses, thus taking into account the fact that different senses of the same ambiguous term may have different sentiment-related properties.
 • estimable – ambiguous term with an objective sense (i.e. measurable), and a positive sense (i.e. deserving respect).

• Multi-word expressions
 • not entirely satisfactory – negative expression
Linguistic Concepts for Opinion Mining

Orientation of terms

• Determining if a subjective term has a +ve or a -ve orientation.

• Adjectives in and conjunctions usually have similar orientation, though but is used with opposite orientation.
 • Opinion Mining is Good and Interesting (positive)
 • History is Good but Boring (neutral)
 • Hitler is Bad and Cruel (negative)

Method: a weighted graph of similarity of orientation is defined by analyzing conjunctions of adjectives in unprocessed text, then a minimum-cut method is applied to the graph.
Linguistic Concepts for Opinion Mining

Terms with similar orientation tend to co-occur in documents.

• The Semantic Orientation (SO) of a term is estimated by combining a Pointwise Mutual Information (PMI) measure of the term against some paradigmatic terms
 • Pos = \{good, nice, excellent, positive, fortunate, correct, superior\}
 • Neg = \{bad, nasty, poor, negative, unfortunate, wrong, inferior\}
Linguistic Concepts for Opinion Mining

Terms with similar orientation have similar glosses.

• Example (glosses for terms with similar orientation)
 • good: “that which is pleasing or valuable or useful”; “agreeable or pleasing”.
 • beautiful: “aesthetically pleasing”.
 • pretty: “pleasing by delicacy or grace; not imposing”.

• Each term is represented by its gloss.

• A binary classifier is learned, in a semi-supervised process, using the glosses of the Positive and Negative terms in the training set.
Linguistic Concepts for Opinion Mining

A semi-supervised learning method to determine semantic orientation of terms:

• The training set is built by iteratively adding to it synonyms and antonyms of terms already belonging to it, starting from two small seed sets Lp and Ln of known Positive and Negative terms.

• A classifier is learned on the glosses of terms in training set and then applied to the glosses of terms in test set.
A semi-supervised learning method to determine semantic orientation of terms.
Determining the overall sentiment

• The orientation of the whole document is the sum of the orientation of all its parts.
• PMI method has been applied to classify (Semantic Orientation)
• Learners: Naïve Bayes, Maximum Entropy, SVM.
• Features: unigrams, bigrams, adjectives, POS, position.
• Preprocessing: negation propagation.
• Representation binary, frequency.
At the document (or review) level

• Task: sentiment classification of reviews.
• Classes: positive, negative, and neutral.
• Assumption: each document (or review) focuses on a single object (not true in many discussion posts) and contains opinion from a single opinion holder.
 • In topic-based text classification, topic words are important.
 • In sentiment classification, sentiment words are more important, e.g., great, excellent, horrible, bad, worst, etc.
Various Studies at Document level

<table>
<thead>
<tr>
<th>Paper</th>
<th>Technique</th>
<th>Features</th>
<th>Dataset</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>SVM, NB</td>
<td>Unigram, Bigrams, Trigrams</td>
<td>Restaurant Review</td>
<td>Supervised</td>
</tr>
<tr>
<td>[3]</td>
<td>SVM, NB, N-gram</td>
<td>Unigram Frequency</td>
<td>Travel Destination</td>
<td>Supervised</td>
</tr>
<tr>
<td>[5]</td>
<td>SVM</td>
<td>Unigram, Bigram</td>
<td>Movie Review</td>
<td>Supervised</td>
</tr>
<tr>
<td>[6]</td>
<td>SVM</td>
<td>Adjective word frequency, percentage of appraisal groups</td>
<td>Movie Review</td>
<td>Supervised</td>
</tr>
<tr>
<td>[7]</td>
<td>PMI-IR</td>
<td>Adjectives, Adverbs</td>
<td>Automobile</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>[8]</td>
<td>ARM</td>
<td>Adjectives, Adverbs</td>
<td>Movie Review</td>
<td>Unsupervised</td>
</tr>
</tbody>
</table>
Conclusions Drawn from the above Studies

• Applied several machine learning and data mining techniques to classify the reviews into positive and negative.

• In supervised learning 3 techniques were tried:
 • Naïve Bayes
 • Maximum entropy
 • Support vector machine
 • SVM: the best accuracy 83%
 • Limitation with supervised learning is that it is sensitive to the quantity & quality of the training data (preprocessing).
At the sentence level

- Task 1: identifying subjective/opinionated sentences
 - Classes: objective and subjective (opinionated)
- Task 2: sentiment classification of sentences
 - Classes: positive, negative and neutral.
 - Assumption: a sentence contains only one opinion not true in many cases.
 - Then we can also consider clauses or phrases.
Various Studies at Sentence level

• [12] Used graphical models in which document level sentiment is linked to several paragraph level sentiments and each paragraph level sentiment is linked to several sentence level sentiments.

• [13] Developed a conditional random field model structured like the dependency parse trees of sentences, by considering opinionated words and sentence shifters.

• [14] Developed a system for computing sentiment of sentences based on the words in the sentence using [11],[15] (appraisal theory, some rules)
Various Studies at Sentence level

[16] Corpus based methods by considering syntactic patterns and co-occurrences of patterns.

[17][18][19][20][21] By constructing Lexicons and by computing PMI (Using sentiwordnet, synonyms, antonyms).
OM Using Sentiwordnet

• Subjectivity and orientation of term senses

• SentiWordNet is a lexical resource that assigns to each synset of WordNet 3 sentiment scores: positivity, negativity, objectivity. (Approx. 1.7 Million words)

• The sum of the scores for a synset is always one.

• Drawback is : Domain independent

Ref: [Esuli and Sebastiani, 2006]
OM Using Sentiwordnet

Very comfortable, but straps go *loose quickly*.

comfortable
- Positive: 0.75
- Objective: 0.25
- Negative: 0.0

loose
- Positive: 0.0
- Objective: 0.375
- Negative: 0.625

Overall - Positive
- Positive: 0.75
- Objective: 0.625
- Negative: 0.625
At the feature level

- **Task 1:** Identify and extract object features that have been commented on by an opinion holder.
- **Task 2:** Determine whether the opinions on the features are positive, negative or neutral.
- **Task 3:** Group feature synonyms.
- Produce a feature-based opinion summary of multiple reviews.
Various Studies at the feature level

<table>
<thead>
<tr>
<th>Paper</th>
<th>Technique</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>[25]</td>
<td>ARM and PMI</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>[26]</td>
<td>ARM</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>[27]</td>
<td>Likely hood Ratio</td>
<td>Unsupervised</td>
</tr>
<tr>
<td>[28]</td>
<td>CRF Approch</td>
<td>Supervised</td>
</tr>
<tr>
<td>[29]</td>
<td>SVM</td>
<td>Supervised</td>
</tr>
<tr>
<td>[30]</td>
<td>HMM</td>
<td>Supervised</td>
</tr>
<tr>
<td>[31]</td>
<td>Double Propagation- Syntactic relation</td>
<td>Semi supervised</td>
</tr>
</tbody>
</table>
Evolution of Sentiment Classification

• Based on four Indexes (Confusion Matrix)
 • Accuracy
 \[
 \frac{TP + TN}{TP + TN + FP + FN}
 \]
 • Precision
 \[
 \frac{TP}{TP + FP}
 \]
 • Recall
 \[
 \frac{TP}{TP + FN}
 \]
 • F1-score
 Harmonic mean of precision and recall
Sentiment Summary and Visualization

- Summary of reviews of Digital camera 1

- Comparison of reviews of Digital camera 1
 - Digital camera 1
 - Digital camera 2
Challenges in Sentiment Analysis

look at reviews on one site only…”

• Problems?
 • Biased views
 • all reviewers on one site may have the same opinion

• Fake reviews/Spam
 • people post good reviews about their own product OR services
 • some posts are plain spams
Challenges in Sentiment Analysis

- Word sense disambiguation
- Preprocessing and Cleaning
- Multi Class classification
- Dealing with Noise
 - Smiles, Special Symbols
- Negation handling
 - I didn’t like apple products
- Unstructured Data Slangs/ Abbreviations
 - Lol (loughing out loud), omg(Oh My god)
Challenges in Sentiment Analysis

- Sentence Segmentation
- Feature Extraction (implicit vs explicit)
- Ambiguous Words
 - This product is literal waste of time
 - Throw your waste material here
References

References

References

References

References

References

