CSE528 Natural Language Processing Venue:ADB-405 Topic: Text Classification

Prof. Tulasi Prasad Sariki, SCSE, VIT Chennai Campus www.learnersdesk.weebly.com

Is this spam?

From: "" <takworlld@hotmail.com>

Subject: real estate is the only way... gem oalvgkay

Anyone can buy real estate with no money down

Stop paying rent TODAY !

There is no need to spend hundreds or even thousands for similar courses

I am 22 years old and I have already purchased 6 properties using the

methods outlined in this truly INCREDIBLE ebook.

Change your life NOW !

Click here to order: http://www.wholesaledaily.com/sales/nmd.htm

Classification

Given:

□A description of an instance, $x \in X$, where X is the *instance language* or *instance space*.

□ Issue: how to represent text documents.

A fixed set of categories:

$$C = \{c_1, c_2, ..., c_n\}$$

Determine:

The category of $x: c(x) \in C$, where c(x) is a *categorization function* whose domain is X and whose range is C.

□We want to know how to build categorization functions ("classifiers").

Examples

Labels are most often topics such as Yahoo-categories

e.g., "finance," "sports," "news>world>asia>business"

Labels may be genres

e.g., "editorials" "movie-reviews" "news"

Labels may be opinion

e.g., "like", "hate", "neutral"

Labels may be domain-specific binary

e.g., "spam" : "not-spam", e.g., "contains adult language" : "doesn't"

Classification Methods

Manual classification

- Used by Yahoo!, Looksmart, about.com, Medline
- Very accurate when job is done by experts
- Consistent when the problem size and team is small
- Difficult and expensive to scale

Automatic document classification

- Hand-coded rule-based systems
- E.g., assign category if document contains a given boolean combination of words
- Accuracy is often very high if a rule has been carefully refined over time by an expert
- Building and maintaining these rules is expensive

Classification Methods

Supervised learning of a document-label assignment function

- Many systems partly rely on machine learning
 - k-Nearest Neighbors (simple, powerful)
 - □ Naive Bayes (simple, common method)
 - Support-vector machines (new, more powerful)
 - Requires hand-classified training data
 - But data can be built up (and refined) by amateurs

Note that many commercial systems use a mixture of methods

Bayesian Methods

Learning and classification methods based on probability theory.

Bayes theorem plays a critical role in probabilistic learning and classification.

Build a generative model that approximates how data is produced

Uses *prior* probability of each category given no information about an item.

Categorization produces a *posterior* probability distribution over the possible categories given a description of an item.

Bayes' Rule

P(C, X) = P(C | X)P(X) = P(X | C)P(C)

 $P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$

TEXT CLASSIFICATION

Task: Classify a new instance *D* based on a tuple of attribute values into one of the classes $c_j \in C$ $D = \langle x_1, x_2, ..., x_n \rangle$ $c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, ..., x_n)$ $= \operatorname{argmax} \frac{P(x_1, x_2, ..., x_n \mid c_j) P(c_j)}{P(c_j)}$

$$- \underset{c_j \in C}{\operatorname{dr}} \underset{p_j \in C}{\operatorname{dr}} P(x_1, x_2, \dots, x_n)$$

$$= \underset{c_j \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \,|\, c_j) P(c_j)$$

The Naïve Bayes Classifier

Conditional Independence Assumption: features are independent of each other given the class

$$P(X_1,...,X_5 | C) = P(X_1 | C) \bullet P(X_2 | C) \bullet \cdots \bullet P(X_5 | C)$$

First attempt: maximum likelihood estimates

Simply use the frequencies in the data

$$\hat{P}(x_i | c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$

Smoothing to Avoid Over fitting

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j) + 1}{N(C = c_j) + k}$$
of values of X_i

Naïve Bayes: Learning

From training corpus, extract Vocabulary

Calculate required $P(c_j)$ and $P(x_k / c_j)$ terms

- For each c_i in C do
 - $docs_i \leftarrow$ subset of documents for which the target class is c_i

$$P(c_j) \leftarrow \frac{|\operatorname{docs}_j|}{|\operatorname{total} \# \operatorname{documents}|}$$

- $Text_i \leftarrow single document containing all docs$
- for each word x_k in *Vocabulary*
 - $n_k \leftarrow$ number of occurrences of x_k in $Text_j$

•
$$P(x_k | c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha | Vocabulary}$$

Example

Training:

Document Name	Key Words						Class Name
	Kill	Bomb	Kidnap	Music	Movie	TV	
Doc1	2	1	3	0	0	1	Terrorism
Doc2	1	1	1	0	0	0	Terrorism
Doc3	1	1	2	0	1	0	Terrorism
Doc4	0	1	0	2	1	1	Entertainment
Doc5	0	0	1	1	1	0	Entertainment
Doc6	0	0	0	2	2	0	Entertainment

Testing:

Document Name			Class Name				
	Kill	Bomb	Kidnap	Music	Movie	TV	
Doc7	2	1	2	0	0	1	?

Example

 V 	С	P(C _i)	n _i	P(Kill / C _i)	P(Bomb / C _i)	P(Kidnap / C _i)	P(Music/ C _i)	P(Movie / C _i)	P(TV / C _i)
6	Т	0.5	15	0.2380	0.1904	0.3333	0.0476	0.09523	0.09253
	Е	0.5	12	0.0555	0.1111	0.1111	0.3333	0.2777	0.1111

 $|V| \rightarrow$ number of Vocabularies $n_i \rightarrow$ total no 'of Documents

P(C_i) -> no' of Documents in Class / no' of all Documents

 $P(Kill / T) = \frac{(2 + 1 + 1) + 1}{15 + |V|} = \frac{5}{21}$

P(T/W) = P(T) * P(Kill / T) * P(Bomb / T) * P(Kidnap / T) * P(Music / T) * P(Movie / T) * P(TV / T)

P(E/W) = P(E) * P(Kill / E) * P(Bomb / E) * P(Kidnap / E) * P(Music / E) * P(Movie / E) * P(TV / E)

Example

 $P(T/W) = 0.5 * (0.2380)^{2} * (0.1904)^{1} * (0.3333)^{2} * (0.0476)^{0} * (0.09523)^{0} * (0.09523)^{1} = 5.7047 \times 10^{-5}$

 $P(E/W) = 0.5 * (0.0555)^{2} * (0.1111)^{1} * (0.1111)^{2} * (0.3333)^{0} * (0.27777)^{0} * (0.1111)^{1} = 2.3456 \times 10^{-5}$

Since P(T/W) has higher values therefore Document7 is classified into <u>Terrorism</u> Class

TEXT CLASSIFICATION

TEXT CLASSIFICATION